

ISSN 2181-8622

Manufacturing technology problems

Scientific and Technical Journal

Namangan Institute of

Engineering and Technology

INDEX COPERNICUS
INTERNATIONAL

Volume 10
Issue 2
2025

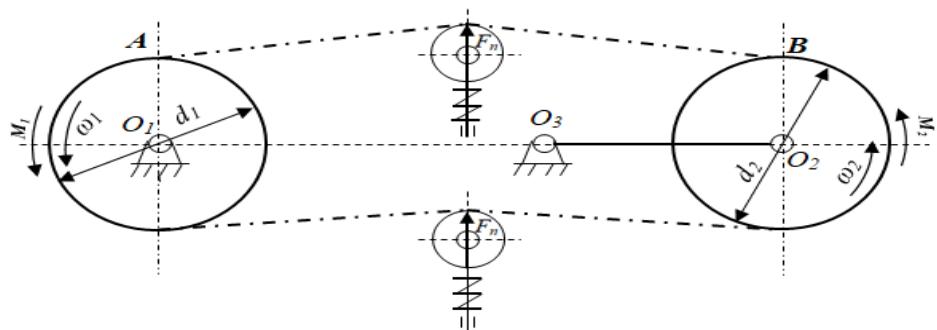
THEORETICAL STUDY OF THE VIBRATION OF CHAIN NETWORKS

TURDALIYEV VOXIDJON

Professor, Namangan State Technical University, Namangan, Uzbekistan
Phone.: (0597) 335-9339, E-mail.: vox-171181@mail.ru

AKBAROV ABDURAXMON

Doctoral student, Namangan State Technical University, Namangan, Uzbekistan
Phone.: (0897) 216-6692, E-mail.: abduraxmonakbarov77@gmail.com
**Corresponding author*


TOYCHIEVA MAJUDA

Researcher, Namangan State Technical University, Namangan, Uzbekistan

Abstract: The article presents the results of theoretical studies of oscillations of the free branch of the chain of a chain transmission with a variable interaxial distance. In the studies, the free branch of the chain was isolated separately and studied as a single-mass mechanical system. As a result of the studies, an equation of motion of the free branch of the chain was compiled and, based on the numerical solution, the laws of change and graphical dependence were constructed.

Keywords: Chain, free branch, motion, vibration, length, angle, equation, sprocket, weight, force, spring, tensioning roller.

Introduction. A chain drive is a type of mechanical transmission in which energy (mechanical motion) is transmitted from a driving shaft to a driven shaft (or shafts) by means of a flexible link (chain) meshing with the teeth of the driving and driven sprockets [1]. The simplicity of the structure of chain drives, high efficiency, absence of slippage compared to belt drives, small overall dimensions, constant number of gears, ease of adjustment and replacement, and the ability to transmit motion to several shafts other than the driving shaft ensure their wide application in technological machine drives. At the same time, chain drives are used as the main transmission in all areas of mechanical engineering due to their ability to transmit high-value power, flexibility, large center distance, and ease of maintenance and installation [2]. In recent years, based on technical and technological innovations, a number of resource-saving transmission designs have been developed, and their unique kinematic and dynamic characteristics have been created.

Figure 1. Chain transmission scheme with variable distance between axles

As is known, the main factor determining the performance of chain transmissions is the resistance of chain elements to wear. In addition to natural wear in chain transmissions during operation, changes in the extension and angle of engagement are observed as a result of vibration or shaking. This, in turn, leads to a decrease in the tensile strength and uneven distribution of loads on the chain links [3]. Therefore, it is important to reduce the vibration of the free links of the chain transmission chain.

Methodology. We will study the vibrations of the free link of a variable pitch chain drive shown in Figure 1. In order to simplify the research, we will isolate the AB part of the chain link separately (Figure 2).

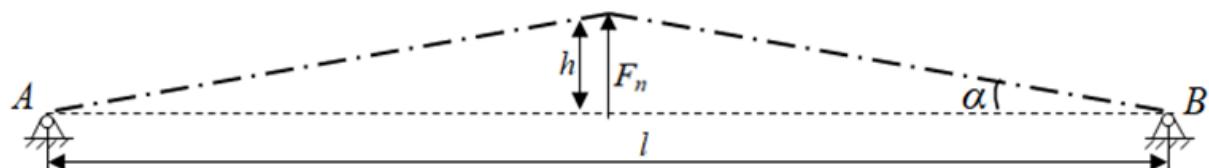


Figure 2. Free link of the chain (section AB)

To study the oscillations of the free network of the chain shown in Fig. 2, we consider it as a one-problem mechanical system.

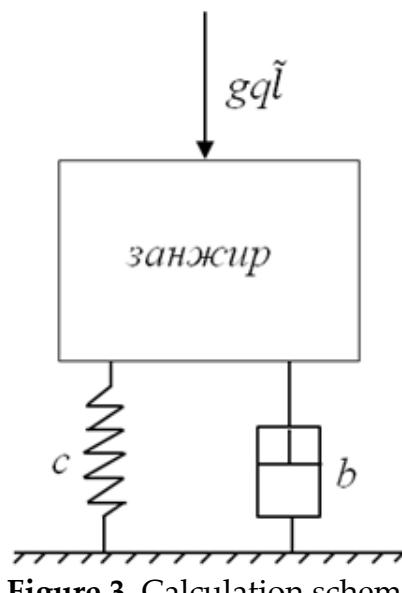


Figure 3. Calculation scheme

According to the calculation scheme presented in Fig. 3, we will construct the equation of motion of the free network of the chain

$$q \cdot l \cdot h'' = g \cdot q \cdot l - ch - bh', \quad (1)$$

where q is the mass of the chain per meter of length; l is the free length of the chain; g is the free fall velocity; c is the density; b is the absorption coefficient; h is the height;

(1) Dividing both sides of the equation by ql , we obtain

$$h'' + \frac{b}{ql}h' + \frac{c}{ql}h = g \quad . \quad (2)$$

To simplify equation (2), we introduce the following notation

$$A = \frac{b}{ql} \quad B = \frac{c}{ql} \quad \Delta_0 = 4B - A^2 \quad . \quad (3)$$

Taking into account (3), we write equation (2) as follows

$$h'' + Ah' + Bh = g \quad . \quad (4)$$

The characteristic equation of the left part of equation (4) is as follows

$$y^2 + A \cdot y + B = 0 \quad , \quad (5)$$

We solve equation (5) and determine its roots

$$y_{1,2} = \frac{-A \pm \sqrt{A^2 - 4B}}{2} = \frac{-A \pm i \cdot \Delta_0}{2} \quad (6)$$

Since the roots of equation (5) are complex numbers, according to [4], we write the following using Euler's formula,

$$h(t) = e^{-\frac{A}{2}t} \cdot \left(c_1 \cos \frac{\Delta_0 t}{2} + c_2 \sin \frac{\Delta_0 t}{2} \right) \quad . \quad (7)$$

Since the equation (2) is a non-homogeneous linear differential equation with constant coefficients of the second order, we define its particular solution as a constant number as follows

$$\bar{h}(t) = D \quad . \quad (8)$$

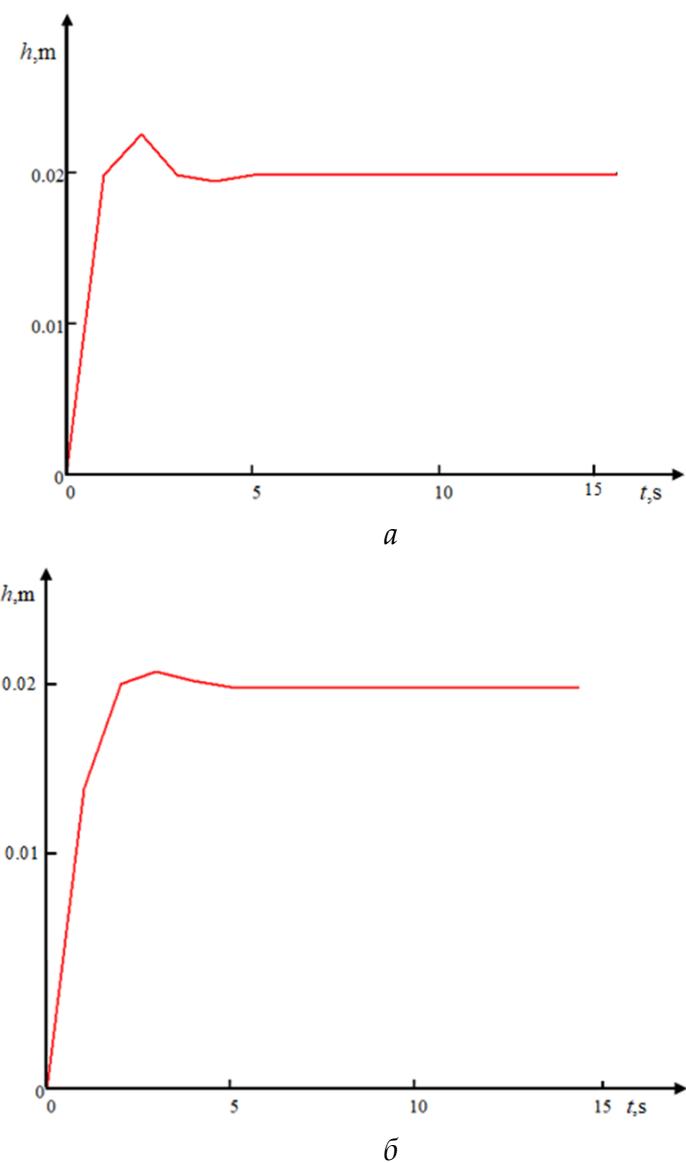
We can find the value of D by substituting expression (8) into equation (2)

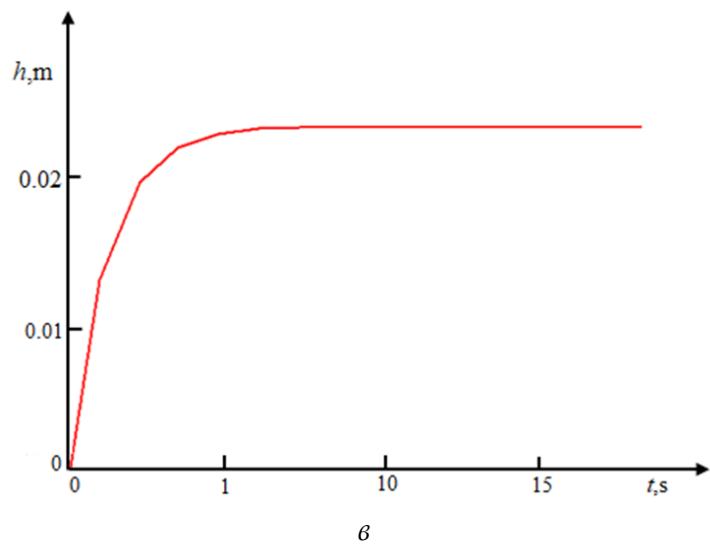
$$D = \frac{g}{B} \quad . \quad (9)$$

Using the above expressions (7) and (9), we write the general solution of equation (2) as follows

$$h(t) = e^{-\frac{A}{2}t} \cdot \left(c_1 \cos \frac{\Delta_0 t}{2} + c_2 \sin \frac{\Delta_0 t}{2} \right) + \frac{g}{B} \quad . \quad (10)$$

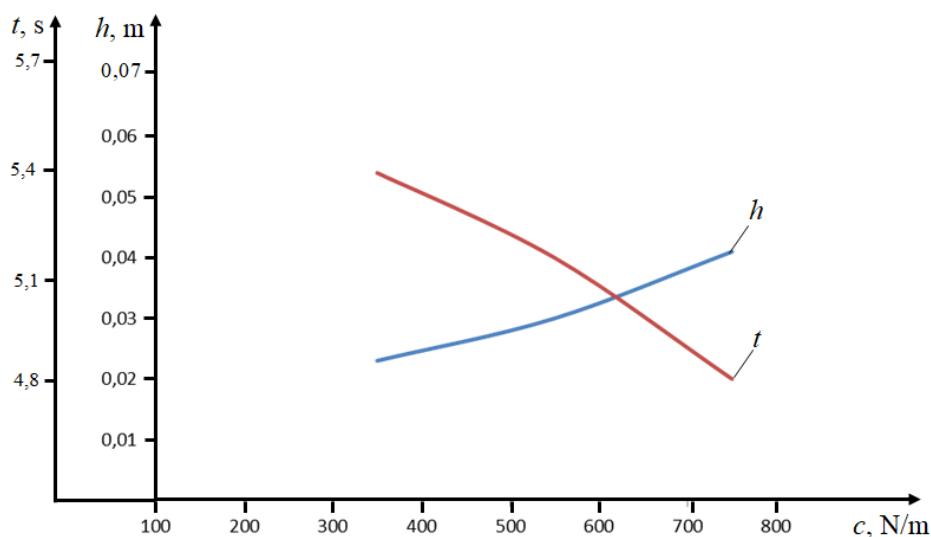
Using equation (10), we determine the integral constants c_1 and c_2 at $t=0$, subject to the conditions $h(0)=0$ and $h'(0)=0$. According to the given condition


$$c_1 = -\frac{g}{B} \quad c_2 = \frac{Ac_1}{\Delta_0} = \frac{-Ag}{\Delta_0 B} \quad . \quad (11)$$


Taking into account the defined integral constants c_1 and c_2 , then equality (10) can be written as follows

$$h(t) = e^{\frac{-bt}{2ql}} \cdot \left(\frac{b \cdot g \cdot q^2 \cdot l^2}{c \cdot (4cql - b^2)} \cdot \sin \left(\left(\frac{b^2 - 4cql}{q^2 l^2} \right) \cdot \frac{t}{2} \right) - \frac{gql}{c} \cdot \cos \left(\left(\frac{b^2 - 4cql}{q^2 l^2} \right) \cdot \frac{t}{2} \right) \right) + \frac{gql}{c} \quad . \quad (12)$$

Results. To determine the oscillation laws of the free chain network, we perform the numerical solution of equation (12) using the Microsoft Office Excel program with the following parameter values, namely $b=3$ Ns/m, $g=9,81$ m/c², $q=1,5$ kg/m, $t=(0:15)$ s, $c=(350:750)$ N/m, $e=2,7$.


Figure 3 shows that when the spring constant is $c=350$ N/m, the vertical oscillation amplitude of the free chain link is 0.023 m, and its damping period is 5.4 seconds. When the spring constant is $c=550$ N/m and $c=750$ N/m, the vertical oscillation amplitude of the free chain link is 0.028 m and 0.042 m, respectively, and their damping periods are 5.1 seconds and 4.8 seconds, respectively.

$a - c = 350 \text{ N/m}$; $\delta - c = 550 \text{ N/m}$; $\theta - c = 750 \text{ N/m}$

Figure 3. Oscillation laws of chain free network

Figure 4. The graph of dependence of the vibration coverage and damping period of the free network of the chain in the vertical direction on the coefficient of elasticity of the spring

Figure 4 shows that with an increase in the stiffness coefficient of the spring in the tensioning device, the amplitude of the oscillations of the free chain link in the vertical direction increases in a curvilinear pattern. However, it can be observed that with an increase in the stiffness coefficient of the spring in the tensioning device, the oscillation periods of the free chain link in the vertical direction decrease in a curvilinear pattern.

In conclusion, it can be said that the oscillations of the free chain links in chain transmissions cannot be positively assessed. Because the oscillations of the chain lead to their departure from the sprockets, acceleration of the wear processes and increased noise. Since the distance between the axles in the chain transmission under study is variable, gaps appear in the chain links during operation, which increases the

acceleration of vibrations. Therefore, the spring in the tensioning device requires a high coefficient of inertia.

References

1. Скорюнов А.А. Механика специальных роликовых цепных передач с внутренним зацеплением: Дис. канд. тех. наук. – Москва, 2015. – 156 с.
2. Краснов А.А. Развитие основ проектирования систем транспортирования нитей и тканей текстильных машин как механизмов с гибкими звеньями: Дисс. докт. тех. – Иванова, 2010. – 357 с.
3. Турдалиев В.М, Акбаров А.И, Ўлмасов С.А. Расчет натяжение в ведущей ветвицепицепной передачи с переменным межосевым расстоянием // Проблемы механики. – Тошкент, 2024. – №2. – С. 48 –53.
4. <http://mathemlib.ru/books/item/f00/s00/z0000027/st238.shtml>.

CONTENTS

TECHNICAL SCIENCES: COTTON, TEXTILE AND LIGHT INDUSTRY

Kadirov K., Xoldorov B., To'xtashev A.	3
Analysis of power quality indicators in light industry enterprises	
Monnopalov J., Kayumov J., Maksudov N.	
Evaluation of deformation properties of highly elastic knitted fabrics in sportswear design	15
Nazarova M., Musayeva G., Mirzarakimova S.	22
Study of clothing quality control and analysis	
Abdullayev R.	
Theoretical basis of technological parameters of the new pneumo-mechanical gin machine	28
Bakhritdinov B.	33
Increase production volume by regeneration of cotton	
Otamirzayev A.	38
Measures to dangermine during the initial processing of cotton	
Kamolova M., Abdulkarimova M., Mahsudov Sh.	42
Measures to dangermine during the initial processing of cotton	
Shogofurov Sh., Jurabayev N., Xolikov K.	
Analysis of the technology of obtaining knitted fabrics with patterns and their physical and mechanical properties	55
Jurabayev N., Shogofurov Sh., Yusupov S.	
Study of the physical and mechanical properties of hosiery products made from bamboo yarn	64

TECHNICAL SCIENCES: AGRICULTURE AND FOOD TECHNOLOGIES

Nasriddinov B., Serkaev Q., Yo'lchiev A.	70
Effect of solvent compositions on oil indicators in cotton oil extraction	
Yulchiev A., Yuldashev Sh.	79
Economic efficiency in the production of cream-perfumed soap	
Ikromova Y., Ikromov F., Khamdamov A., Xudayberdiyev A.	85
Modeling of primary distillation process of vegetable oil micella	
Ismailov M., Adashev B.	
Prevention of external flood formation on the surface of heat exchanger pipes	92

CHEMICAL SCIENCES

Tajibayeva N., Ergashev O.	
Nanofibers based on chitosan and synthetic polymers: a review of properties and applications	99

Kuchkarova D., Soliyev M., Ergashev O.

Quantitative determination of adsorption activity of adsorbents obtained on the basis of cotton stalk and cotton boll **104**

Abdullaxanova G., Ergashev O.

Differential heat and entropy of adsorption of methanethiol in sodalite **112**

Paygamova M., Khamzakhojayev A., Ochilov A., Paygamov R.

Physicochemical properties of carbon adsorbents derived from renewable biomass **121**

Kochkarova R.

Use of electron spectra in determining the coordination number of central atoms of complex compounds based on Ni(II) and Co(II) ions **131**

Yusupova M., Mamadjonova M., Egamberdiev S., Abduvohidov I.

Study of the conditions for the aminolysis of secondary polycarbonate **136**

Ikramova G., Askarova O., Siddikov D., Karimov A., Botirov E.

Chemical components of perovskia kudrjashevii **142**

Kaxarova M., Soliyev M.

Types of plant growth regulators and their application in agriculture **147**

Juraboev F.

Investigation of the synthesis of acetylene amino alcohols and the study of their biological activity **151**

Salikhanova D., Usmonova Z.

Thermal activation of plums **155**

Kadirxanov J., Urinov A.

Development of composite materials for corrosion protection of main gas and oil pipelines with increased chemical adhesion **160**

Sotiboldiev B.

Synthesis of hybrid composites of polysaccharides based on methyltrimethoxysilane **167**

Jumayeva D., Nomonova Z.

Chemical characterization of raw materials used for adsorbent production **174**

Muratova M.

Method for producing a fire retardant agent with nitric acid solutions of various concentrations **183**

Shamuratova M., Abdikamalova A., Eshmetov I.

Physicochemical properties and results of sem analysis of soils in the regions of Karakalpakstan **192**

Dadakhanova G., Soliev M., Nurmonov S.

Composition of oil products and methods of separation of individual substances **199**

Hoshimov F., Bektemirov A., Ergashev O.**206**

Effectiveness of the drug "Akaragold 72%" against cotton spider mites

Abdirashidov D., Turaev Kh., Tajiiev P.Analysis of the physicochemical properties of polyvinyl chloride and the **213**
importance of mineral fillers in increasing its fire resistance

TECHNICAL SCIENCES: MECHANICS AND MECHANICAL ENGINEERING

Makhmudjonov M., Muminov Kh., Tilavkhanova L.**219**

Classification and analysis of level measurement methods

Mukhammadjanov M.Digital modeling of the heat transfer process in oil power transformers in **226**
operation

Mukhtorov D.Investigation of drying efficiency in a solar installation with composite **230**
polyethylene film depending on the product thickness

Tursunov A., Shodmanov J.Advancing sustainable environmental strategies in the cotton industry **239**
through dust emission reduction

Saidov O.Event-driven process orchestration in e-governance: modeling **247**
asynchronous integration patterns

Obidov A., Mamajanov Sh.Organization of scientific and research processes based on information and **252**
digital technologies in higher education

Turdaliyev V., Akbarov A., Toychieva M.Theoretical study of the vibration of chain networks **259**

Abdusattarov B., Xamidov S.Modeling the process of separating cotton particles from air in the working **265**
chamber of a cotton gin

Toirov O., Amirov S., Khalikov S.Diagnostics of the condition of elements of electric power supply substation **272**

ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCATION

Mukhtorov D., Jamoldinov K.**281**Development and improvement of drying technologies in a solar dryer

Uzokov F.Graphical solution of systems of equations in two-and three-dimensional **291**
spaces using MS excel

ECONOMICAL SCIENCES

Yuldashev K., Kodirov X.

Financing of pre-school educational institutions based on public-private partnerships and their results **299**

Boltaboev D.

Specific aspects of labor resource management in different countries **304**