

Scientific and Technical Journal Namangan Institute of Engineering and Technology

INVESTIGATION OF THE SYNTHESIS OF ACETYLENE AMINO ALCOHOLS AND THE STUDY OF THEIR **BIOLOGICAL ACTIVITY**

JURABOEV FOZIL

Docent, Namangan State Technical University, Namangan, Uzbekistan Phone.: (0894) 270-3275, E-mail.: foziljonjuraboev75@gmail.com

Abstract: This work describes the synthesis of acetylene amino alcohols based on the aminomethylation of secondary acetylene alcohols in a 1,4-dioxane solvent medium, using formaldehyde and hydroxyl-containing or heterocyclic amino compounds under the catalysis of copper(I) salts. Hex-1-yn-3-ol was used as a secondary acetylene alcohol, and amines such as monoethanolamine, diethanolamine, and morpholine were used as aminating agents. As a result of the conducted research, amino alcohols with high yields were synthesized. The results of studies on the use of the obtained acetylene amino alcohols in agriculture are presented. The biostimulating effect of synthesized acetylene amino alcohols has been studied. Their positive effect on the germination of wheat seeds and an increase in yield has been established.

Keywords: secondary acetylene alcohol, hex-1-yn-3-ol, acetylene amino alcohol, Mannich reaction, formaldehyde, hydroxyl-containing and heterocyclic amines, biostimulator, seed germination, wheat growth.

Introduction. Many nitrogen-containing compounds synthesized on the basis of secondary acetylenic alcohols exhibit physiological activity and, due to this, are used in various fields of industry and agriculture as herbicides, fungicides, defoliants, growth regulators, pharmaceuticals, corrosion inhibitors, and more. The biological activity of these compounds is explained by the presence of several reactive sites in their molecules (acetylene bond, hydroxyl group, heterocyclic ring, and amino group) [1–5].

In several studies, the most convenient and widespread method of obtaining acetylene amino alcohols involved the Mannich reaction, in which acetylene alcohols were aminomethylated using formaldehyde and a secondary amine. Hydroxylcontaining and heterocyclic amines such as ethanolamine, diethanolamine, and morpholine were selected as aminating agents.

Materials and Research Methods: Through the condensation of n-oil-aldehyde or propanone [4,5] with acetylene, the corresponding acetylenic alcohols were obtained. The influence of various factors (temperature, pressure, reaction duration, and the nature of the solvent used) on the synthesis process was investigated. The resulting compounds were then subjected to the Mannich reaction, where they were converted into the corresponding amino alcohols by aminomethylation using paraformaldehyde with monoethanolamine, diethanolamine, and morpholine, as shown in the following scheme:

$$\begin{array}{c} \text{R-CH-C} = \text{CH} + \text{CH}_2\text{O} + \text{NH}(\text{R}^{/})_2 \xrightarrow{\text{Cu}^+, \, ^{\text{o}}\text{t}} \\ \text{OH} \end{array} \qquad \begin{array}{c} \text{R-CH-C} = \text{C-CH}_2 - \text{N}(\text{R}^{/})_2 & + \text{H}_2\text{O} \\ \text{OH} \end{array}$$

where: $-N(R')_2$ = monoethanolamine, diethanolamine, or morpholine group The synthesis of acetylene amino alcohols was carried out according to the scheme at 90–100 °C, catalyzed by copper(I) acetate salts in a 1,4-dioxane solvent medium [5–8].

0.1 mol of acetylene alcohol, 0.1 mol of paraformaldehyde, 80 ml of dioxane, and 0.02 g of copper(I) chloride were placed in a 250 ml four-necked flask equipped with a stirrer, condenser, and thermometer. The reaction mixture was stirred intensively at 90-100 °C for 6–7 hours.

Within 30 minutes of starting the reaction, a mixture of 50 ml of 1,4-dioxane and 0.1 mol of secondary amine was added through a funnel. After the reaction was complete, the mixture was left overnight. The following day, the contents were transferred to a 1000 ml separation funnel, diluted with distilled water, and extracted with 200 ml of chloroform. The organic layer (main product) was isolated. This process was repeated at least three times.

The chloroform layers were combined and dried with potassium carbonate. Chloroform was removed by distillation in a water bath at 60-80 °C. The residue was separated into components by vacuum distillation.

Acetylene alcohols, amino alcohols, and hydroxy acids act as biostimulants for plants [5-8]. The acetylene amino alcohols synthesized were tested for their ability to stimulate plant seed germination, control plant growth, and increase yield. Treatments included soaking seeds in aqueous solutions of the compounds.

In the next stage, treatments involved spraying plant stems with the same solutions. These tests were conducted jointly with the Namangan Scientific Experimental Station for grain and leguminous crops in wheat-planted experimental fields.

The biostimulating properties of synthesized acetylene amino alcohols – 1-((2hydroxyethyl)amino)hept-2-in-4-ol 2,2'-((4-hydroxyhept-2-in-1-(GEAG), yl)azanediyl)bis(ethane-1-ol) (GGAE), and 1-morpholinohept-2-in-4-ol (MG) – were studied on Babur variety wheat crops sown in autumn on 1.2 hectares of experimental plots.

Germination rate depends on climatic and soil conditions, physical and chemical soil properties, the effect of stimulants, fertilizer type and dosage, seed variety, and sowing time [1-5].

200 kg of grain seeds were used per hectare, with 0.2 kg used per 40 m² plot. Seeds in five different variants were soaked for one day in 0.05% aqueous solutions of GEAG, GGAE, MG, and succinic acid (as reference).

Under laboratory conditions, 0.05% concentrations of these compounds were optimal. Therefore, 0.005% solutions were used in field trials. Wheat seeds were soaked in 0.05% aqueous solutions for four days before sowing.

Results and Discussion: The experimental results showed that favorable synthesis conditions yielded high amounts of acetylene amino alcohols using hydroxyl-containing and heterocyclic amines. Maximum yield was obtained with a 6-hour reaction at 95 °C. The yield from heterocyclic amines was higher than from hydroxyl-containing ones. Yields and physicochemical constants are shown in Table 1.

Table 1. Yields and physicochemical constants of synthesized acetylenic amino alcohols

Nº	Acetylenic amino	Yield	Boiling Point (°C/mmHg) or	Density	Refractive Index
	alcohol	(%)	Melting Point (°C)	(g/cm³)	$(n \pm 0.003)$
I	GEAG	54.4	140–141 / 76	0.9720	1.4783
II	GGAE	62.7	158–160 / 76	0.9910	1.4800
III	MG	70.2	148–150 / 76	0.9082	1.4721

During field experiments, the number of sprouted seedlings was counted 12 days after sowing. The results are shown in Table 2.

Table 2. Effect of preparations on wheat seed germination

Nº	Treatment Variant	Germination (%)	Difference from Control (%)
1	Control (water)	87.3	-
2	0.05% GEAG solution	93.6	+6.3
3	0.05% GGAE solution	94.2	+6.9
4	0.05% MG solution	94.1	+6.8
5	0.05% succinic acid solution	89.7	+2.4

Table 3. Effect of preparations on wheat growth and yield

Nº	Treatment Variant	Yield (c/ha)	Increase over Control (c/ha)
1	Control	55.8	_
2	0.05% GEAG solution	60.8	+5.0
3	0.05% GGAE solution	61.8	+6.0
4	0.05% MG solution	61.6	+5.8
5	0.05% succinic acid solution	58.7	+2.9

The results confirm that the new preparations positively affected the yield of Babur variety winter wheat, increasing yield by 5.0–6.0 c/ha over the control.

Conclusion. Based on the study, compounds containing unsaturated bonds and amino and hydroxyl groups demonstrate high biological activity. Acetylene amino alcohols with such reactive centers act as effective biostimulants, promoting plant growth and development. They positively affect seed germination and seedling growth, ultimately improving yield. Moreover, these compounds enhance plant resistance to environmental stress and diseases.

Literature:

- 1. Закирова Р.П., Рахимова Ш.Х., Халикова М.Б., Маматкулова Н.М., Калацкая Ж.Н., Ламан Н.А., Мусаев Х.А., Кутлиева У.Г. Влияния регуляторов роста на основе полипренолов на биохимические показатели проростков пшеницы (Triticum aestivum L.) // Universum: химия и биология: электрон. Научн. Журн. -2024. 1(115).
- 2. Данилов А.В. Влияние стимуляторов роста на урожайность и качество прдукции зерновых культур // Вестник Марийского государственного университета. -2017. Т.З. №1(9). -С. 28-30.

Vol. 10 Issue 2 www.niet.uz 2025

- 3. Баранова Т.В., Калаев В.Н., Воронин А.А. Экологически безопасные стимуляторы роста для предпосевной обработки семян // Вестник Балтийкого федерального университета им. И.Канта. -2014. №7, –С. 96-102.
- 4. Ефремова Ю.В., Амелин П.А., Лопачев Н.А. Изучение влияния стимуляторов роста на начальные стадии развития озимой пшеницы // Вестник Орел ГАУ. -2014. -№6, –С. 22-29.
- 5. Саттаров Ж.С., Атоев Б.Д., Махаммадиев С.К. Взаимодействие сортов озимой пшеницы и удобрений на староорошаемом типичном сероземе // Журнал Плодороде. Москва. -2016. №2.(89). -С. 17-20.
- 6. Зокиров С.С., Зокиров С., Жўрабоев Ф., Ахмедов Б., Охундадаев А., Хайдаров О. Синтез ацетиленовых спиртов и изучение их влияния на рост, развитие и урожайность хлопчатника // Развитие науки и технологий. НТЖ. -2018. -№5. –С.25-31.
- 7. Juraboev F.M. Research of the synthesis of new acetylene aminoalcohols. E3S Web of Conferences. AGRITECH-IX 2023 486, 05011. 2024.
- 8. Zokirov S., Juraboev F.M., Zokirov S.S., Turgunov E. Research of synthesis of acetylene amino alcohols and study of their properties // International Journal of Disaster Recovery and Business Continuity. Australia. -2020. Vol.11, No. 3. -P. 2850-2857.
- 9. Журабоев Ф.М., Нурмонов С.Э. Синтез ацетиленового аминоспирта на основе этаноламина и 2-метилбут-3-ин-2-ола // Universum: технические науки: электрон. научн. журнал. Россия, Москва. -2021. 6 (87). -С. 26-28.
- 10. Журабоев Ф.М., Нурмонов С.Э., Зокиров С. Синтез ацетиленового аминоспирта и его производных // Universum: технические науки: электрон. научн. журнал. Россия, Москва. -2021, 10 (88). -С. 44-47.
- 11. Доспехов Б.А. Методика полевого опыта. Москва. «Агропромиздат». -1985. -C. 352.
- 12. Эргашев А. Агрохимические свойства орошаемых почв Узбекистана и пути повышения их плодородия. Автореф. дисс. на соиск. учен. степ. канд. с-х. наук. -Т.: -1993. -С. 36.
- 13. Титов А.Ф., Таланова В.В. Устойчивость растений и фитогормоны. Петрозаводск, -2009. -C. 206.
- 14. Зокиров С.С., Журабоев Ф.М., Зокиров С., Арипов Х.Ш. Синтез ацетиленовых моноаминов и изучение их влияния на всхожесть семян хлопчатника // Наманганский инженерно-технологический институт. Научный-технический журнал. -2019. №1. -С. 133-139.

Vol. 10 Issue 2 www.niet.uz

2025

CONTENTS

TECHNICAL SCIENCES: COTTON, TEXTILE AND LIGHT INDUSTRY			
Kadirov K., Xoldorov B., Toʻxtashev A.			
Analysis of power quality indicators in light industry enterprises	3		
Monnopov J., Kayumov J., Maksudov N.			
Evaluation of deformation properties of highly elastic knitted fabrics in	15		
sportswear design			
Nazarova M., Musayeva G., Mirzaraximova S.			
Study of clothing quality control and analysis	22		
Abdullayev R.			
Theoretical basis of technological parameters of the new pneumo-	28		
mechanical gin machine			
Bakhritdinov B.	33		
Increase production volume by regeneration of cotton			
Otamirzayev A.	38		
Measures to dangermine during the initial processing of cotton			
Kamolova M., Abdukarimova M., Mahsudov Sh.	42		
Measures to dangermine during the initial processing of cotton	-14		
Shogofurov Sh., Jurabayev N., Xolikov K.			
Analysis of the technology of obtaining knitted fabrics with patterns and	55		
their physical and mechanical properties			
Jurabayev N., Shogofurov Sh., Yusupov S.			
Study of the physical and mechanical properties of hosiery products made	64		
from bamboo yarn			
TECHNICAL SCIENCES: AGRICULTURE AND FOOD TECHNOLOGIES			
Nasriddinov B., Serkaev Q., Yoʻlchiev A.	70		
Effect of solvent compositions on oil indicators in cotton oil extraction			
Yulchiev A., Yuldashev Sh.			
Economic efficiency in the production of cream-perfumed soap			
Ikromova Y., Ikromov F., Khamdamov A., Xudayberdiyev A.			
Modeling of primary distillation process of vegetable oil miccella	85		
Ismailov M., Adashev B.			
Prevention of external flood formation on the surface of heat exchanger	92		
pipes			
CHEMICAL SCIENCES			
Tajibayeva N., Ergashev O.			
Nanofibers based on chitosan and synthetic polymers: a review of properties	99		
and applications			

Kuchkarova D., Soliyev M., Ergashev O.		
Quantitative determination of adsorption activity of adsorbents obtained on		
the basis of cotton stalk and cotton boll		
Abdullaxanova G., Ergashev O.	112	
Differential heat and entropy of adsorption of methanethiol in sodalite		
Paygamova M., Khamzakhojayev A., Ochilov A., Paygamov R.		
Physicochemical properties of carbon adsorbents derived from renewable	121	
biomass		
Kochkarova R.		
Use of electron spectra in determining the coordination number of central	131	
atoms of complex compounds based on Ni(II) and Co(II) ions		
Yusupova M., Mamadjonova M., Egamberdiev S., Abduvohidov I.	136	
Study of the conditions for the aminolysis of secondary polycarbonate	150	
Ikramova G., Askarova O., Siddikov D., Karimov A., Botirov E.	142	
Chemical components of perovskia kudrjaschevii	114	
Kaxarova M., Soliyev M.	147	
Types of plant growth regulators and their application in agriculture	11/	
Juraboev F.		
Investigation of the synthesis of acetylene amino alcohols and the study of	151	
their biological activity		
Salikhanova D., Usmonova Z.	155	
Thermal activation of plums	155	
Kadirxanov J., Urinov A.		
Development of composite materials for corrosion protection of main gas	160	
and oil pipelines with increased chemical adhesion		
Sotiboldiev B.		
Synthesis of hybrid composites of polysaccharides based on	167	
methyltrimethoxysilane		
Jumayeva D., Nomonova Z.		
Chemical characterization of raw materials used for adsorbent production	174	
Muratova M.		
Method for producing a fire retardant agent with nitric acid solutions of		
various concentrations		
Shamuratova M., Abdikamalova A., Eshmetov I.		
Physicochemical properties and results of sem analysis of soils in the regions	192	
of Karakalpakstan		
Dadakhanova G., Soliev M., Nurmonov S.		
Composition of oil products and methods of separation of individual	199	
substances		

Hoshimov F., Bektemirov A., Ergashev O.	206
Effectiveness of the drug "Akaragold 72%" against cotton spider mites	
Abdirashidov D., Turaev Kh., Tajiyev P.	. 012
Analysis of the physicochemical properties of polyvinyl chloride and the importance of mineral fillers in increasing its fire resistance.	213
importance of mineral fillers in increasing its fire resistance	
TECHNICAL SCIENCES: MECHANICS AND MECHANICA	AL
ENGINEERING	
Makhmudjonov M., Muminov Kh., Tilavkhanova L.	210
Classification and analysis of level measurement methods	219
Mukhammadjanov M.	
Digital modeling of the heat transfer process in oil power transformers in	226
operation	
Mukhtorov D.	
Investigation of drying efficiency in a solar installation with composite	230
polyethylene film depending on the product thickness	
Tursunov A., Shodmanov J.	
Advancing sustainable environmental strategies in the cotton industry	239
through dust emission reduction	
Saidov O.	
Event-driven process orchestration in e-governance: modeling	247
asynchronous integration patterns	
Obidov A., Mamajanov Sh.	
Organization of scientific and research processes based on information and	252
digital technologies in higher education	
Turdaliyev V., Akbarov A., Toychieva M.	259
Theoretical study of the vibration of chain networks	
Abdusattarov B., Xamidov S.	
Modeling the process of separating cotton particles from air in the working	265
chamber of a cotton gin	
Toirov O., Amirov S., Khalikov S.	272
Diagnostics of the condition of elements of electric power supply substation	
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION
Mukhtorov D., Jamoldinov K.	281
Development and improvement of drying technologies in a solar dryer	201
Uzokov F.	
Graphical solution of systems of equations in two-and three-dimensional spaces using MS excel	291

ECONOMICAL SCIENCES

ECONOMICAL SCIENCES	
Yuldashev K., Kodirov X.	
Financing of pre-school educational institutions based on public-private	
partnerships and their results	
Boltaboev D.	304
Specific aspects of labor resource management in different countries	