

ISSN 2181-8622

Manufacturing technology problems

Scientific and Technical Journal

Namangan Institute of

Engineering and Technology

INDEX COPERNICUS
INTERNATIONAL

Volume 10
Issue 2
2025

SLIB.UZ
Scientific library of Uzbekistan

TYPES OF PLANT GROWTH REGULATORS AND THEIR APPLICATION IN AGRICULTURE

KAXAROVA MUXARRAM

PhD, Namangan State Technical University, Namangan, Uzbekistan

Phone.: (0897) 370-7787, E-mail.: muharramqahharova@gmail.com

*Corresponding author

SOLIYEV MUKHAMMADJON

Docent, Namangan State Technical University, Namangan, Uzbekistan

Phone.: (0893) 925-5072, E-mail.: muhammadbey@mail.ru

Abstract: Development of intensive productivity in modern conditions, creation of quickly and regularly productive varieties of agricultural crops, allowing to grow as much as possible and high-quality products per unit of sown area, discovery of groups of chemical substances involved in the processes of plant growth and development.

Keywords: auxin, phytohormone, cytokinin, stimulant, ethylene, gibberellin.

Introduction. The discovery of groups of chemical substances involved in plant growth and development processes has, to date, opened the way to significant changes not only in biology but also in the fields of chemistry and agriculture. In scientific literature, such compounds are referred to by various terms, including *phytohormones*, *growth promoters*, *growth inhibitors*, *stimulators*, and *auxins* [1].

Plant growth can be regulated through phytohormones such as cytokinins, auxins, gibberellins, abscisic acid, and ethylene. Endogenous growth stimulators include auxins, cytokinins, and gibberellins, whereas abscisic acid and ethylene are considered endogenous growth inhibitors. Currently, eight groups of phytohormones are known. These include gibberellins, auxins, cytokinins, abscisic acid, ethylene, brassinosteroids, salicylic acid derivatives (solantranes), and fusococcins [2, 3].

Researchers are actively exploring the synthetic development of growth stimulators tailored to each crop, with the aim of directing cultivated plants to produce high yields at desired stages, improving yield quality, and accelerating or delaying maturation, based on the premise that regulating the development of cultivated plants can bring significant benefits to humans [4].

In agriculture, plant growth regulators are synthetic substances that, when applied in small quantities, influence physiological processes in plants, producing either inhibitory or stimulatory effects on growth. These substances act similarly to phytohormones in plants but are not found in nature. Synthetic growth regulators differ significantly from nutrients and assimilates in both function and composition.

In general, synthetic growth regulators enable control over plant growth and development by modulating the activity of natural (endogenous) hormones within the plant organism to a desired extent and in a targeted direction [5].

Most growth regulators possess selectivity, meaning they affect specific plant species, varieties, tissues, or organs. As a result, they can contribute to increased biomass, enhanced cold resistance, and improved crop yields.

In Uzbekistan, the use of plant growth regulators is regulated by the Resolution of the Cabinet of Ministers No. 765, dated December 2, 2020, which approves the "Regulations on the Procedure for Testing and Registering Chemicals and Plant Protection Products" [6].

Under current modern conditions, achieving intensive productivity requires a comprehensive approach. This includes the development of crop varieties that provide high and consistent yields per unit area and the application of effective physiologically active substances—growth regulators—to manage their growth and development [7].

However, the effectiveness of growth regulators depends on proper plant nutrition, adequate water supply, appropriate care, and good agronomic practices [8, 9].

As early as 1984, L.J. Nickell stated, based on his research: "*The importance of growth regulators will continue to increase. Due to rising energy costs and the expansion of urban and industrial areas reducing arable land, a twofold increase in global food production by the end of the 20th century can only be achieved through the use of plant growth regulators. Without them, it will be impossible to significantly increase agricultural output.*"

Indeed, in recent years, the scope of studying and applying growth regulators has expanded, making them one of the essential components of modern agricultural production technologies. In developed countries, up to 50–80% of crops are cultivated using plant growth regulators [7].

Given the increasing use of growth regulators in household plots, as well as in dehqon (peasant) and farming enterprises, it is reasonable to expect a further expansion of the areas where these substances are applied.

New groups of plant growth regulators not only exhibit high physiological activity and fungicidal effects, but also demonstrate anti-stress and immunoprotective properties at very low concentrations (5–50 mg/ha). Phytohormones and hormone-like substances—such as epibrassinolide, sodium salts of gibberellic acids, and fungal metabolites—participate in the plant's metabolic processes, and their resulting natural compounds do not have a harmful impact on the soil or the environment [7].

Plant growth regulators are also widely used in horticulture. Their application in the growth and development of fruits is especially important from an industrial standpoint [10].

New substances derived from natural microbes and biotechnological processes enhance metabolic activities by increasing the concentration of amino acids, proteins, carbohydrates, vitamins, and minerals involved in protecting plants from stress conditions [11]. According to research conducted by V.A. Alferov, V.O. Khrapova, and T.G. Prichkolar (Russia), the physiologically active compound "Antifreeze" not only protects fruits from spring frost damage, but also improves pollination and fruit set under cold and rainy weather conditions. Specifically, a single application of this product

increased fruit set by 2.1% compared to the control, while two applications resulted in a 10.6% increase.

In horticulture, growth regulators are used to accelerate plant growth, stimulate rooting of cuttings, aid in seedling transplantation, increase yields, induce leaf drop, inhibit vegetative growth, prevent premature fruit drop before harvest, and promote thinning during flowering and fruit set stages [12, 13].

Significant contributions to this field have been made by researchers such as R. Stowe, L. Edgerton, E. Fisher, M. Hoffman, E. Kraus, M. Berezovsky, L. Laquilla, and others. Their studies have led to the development of several effective strategies aimed at improving the yield and quality of various fruit crops.

Among physiologically active substances, *retardants* are among the most widely used in horticulture. These compounds disrupt the synthesis of gibberellins and auxins in plant tissues, slowing down vegetative growth and enhancing the plant's resistance to adverse conditions [14, 15]. Retardants also promote generative processes in plants, accelerate the onset of fruiting in young trees, and increase their productivity, thereby intensifying crop performance [16, 17].

Studies on the effects of retardants on fruit trees began in the 1960s and continue to this day [16, 18, 19, 20].

In young trees treated with retardants, characteristics typically observed in dwarf rootstock grafted trees—such as reduced height, shorter branches and shoots, early and abundant bud formation, and high productivity—were also exhibited [14, 21, 22]. In subsequent years, flowering and yield in these trees increased up to fourfold.

In conclusion, it can be stated that the range of research and application of plant growth regulators and their various types in agriculture is steadily expanding. In modern agriculture, growth regulators are also being widely used in horticulture. Enhancing fruit growth and development, improving their quality and stress resistance, and further developing the relevant technologies remain among the most important tasks ahead of us today.

References

1. Schumacher, R. Einfluss der Hemmstoffes Alar auf die Fruehtentwicklung /R. Schumacher, F. Frankhauser, E.Schiopfer // Schweiz. Land. Fürcb. - 1983. - № 6. - P.148-169.
2. Гудковский, В.А. Система сокращения потерь и сохранение качества плодов и винограда: методические рекомендации [Текст] / В.А. Гудковский. – Мичуринск, 1990. – 120 с.
3. Регуляторы роста растений [Текст] / К.З. Гамбург, О.Н. Кулаева, Г.С. Муромцев и др., под ред. Г.С. Муромцева. – М.: Колос, 1979. – 246 с.
4. Шаповал, О.А. Регуляторы роста растений [Текст] / О.А. Шаповал, В.В. Вакуленко, Л.Д. Прусакова // Защита и карантин растений. – 2008 – №12. – С. 54-71.

5. Никелл, Л. Дж. Регуляторы роста растений. Применение в сельском хозяйстве. Пер. с англ. В.Г. Кочанкова [Текст]: / под ред. и с предисл. В.И. Кефели. – М.: Колос, 1984. – 192 с.
6. <https://lex.uz/docs/5137058>
7. Зволинский, В.П. Сады Прикаспия [Текст]: монография / В.П. Зволинский, Е.Н. Иваненко, Л.А. Добросокина. – Волгоград: ФГОУВПО Волгоградская ГСХА, 2011. – 324 с.
8. Чайлахян, М.Х. Регуляторы роста в жизни растений и практике сельского хозяйства [Текст] / М.Х. Чайлахян // Вестник АН СССР, 1982. – №1. – С. 11-26.
9. Чайлахян, М.Х. Регуляция цветения высших растений [Текст] / М.Х. Чайлахян. – М.: Наука, 1988. – 560 с.
10. Регуляторы роста растений в сельском хозяйстве [Текст] / Подред. Г.Тукея; перевод с англ. Н.В. Цингер. – Москва, 1958. – 389 с.
11. Причко, Т.Г. Характеристика стресс-факторов на товарное качество плодов [Текст] / Т.Г. Причко // Плодоводство и виноградарство юга России. – 2011. – №12. – С. 48-55.
12. Верзилов, В.Ф. Регуляторы роста и их применение в растениеводстве [Текст] / В.Ф. Верзилов. – М.: Наука, 1971. – 144 с.
13. Тарасенко, М.Т. Размножение смородины и крыжовника черенками с листьями (зеленое черенкование) [Текст] / М.Т. Тарасенко // Известия ТСХА. – 1958. – №5. – С. 23-26.
14. Агафонов, Н.В. Применение регуляторов роста в плодоводстве [Текст] / Н.В. Агафонов, В.В. Фаустов. – М.: Колос, 1972. – 24 с.
15. Плодоводство [Текст] / Под ред. В.И. Якушева. – М.: Колос, 1982. – 415 с.
16. Влияние регуляторов роста на продуктивность и товарные качества различных сортов яблони в условиях ЦЗР [Текст] / Д.Е. Федоров, А.В. Соловьев, Н.П. Сдвижков, Д.Н. Еремеев // Вестник МичГАУ. – 2011. – Ч. 1. – №1. – С. 69-72.
17. Никиточкин, Д.Н. Влияние синтетических экологически чистых регуляторов роста на рост, урожайность и сохраняемость плодов яблони сорта Антоновка [Текст]: дисс. ... канд. с.-х. наук: 06.01.07. / Никиточкин Дмитрий Николаевич. – Москва, 2001. – 160 с
18. Попова, В.П. Эффективность применения регулятора роста Регалис в интенсивных насаждениях яблони [Текст] / В.П. Попова, Т.Г. Фоменко и др. // Садоводство и виноградарство. – 2013. – №3. – С. 31-34.
19. Регуляторы роста растений [Текст] / Под ред. В.С. Шевелухи. – М.: Агропромиздат, 1990. – 185 с.
20. Luckwill, L.C. Growth retardants on apples: summary of experiments 1964-1966 / L.C. Luckwill, R.D. Child // Long Ashton Agric. fnd Hortic. Res. St. Annual Report. -1966.- Bristol.-P. 5-72.
21. Капля, А.В. Физиологические действия ретардантов на плодовые культуры [Текст] / А.В. Капля, Т.А. Мороз, А.И. Тернаевский. – Киев: Вища школа, 1978. – 152 с.
22. Орошающее садоводство [Текст] / В.И. Сенин, П.В. Ключко, Н.А. Барабаш и др.; под ред. В.И. Сенина. – Киев: Урожай, 1985. – 176 с.

CONTENTS

TECHNICAL SCIENCES: COTTON, TEXTILE AND LIGHT INDUSTRY

Kadirov K., Xoldorov B., To'xtashev A.	3
Analysis of power quality indicators in light industry enterprises	
Monnopalov J., Kayumov J., Maksudov N.	
Evaluation of deformation properties of highly elastic knitted fabrics in sportswear design	15
Nazarova M., Musayeva G., Mirzarakimova S.	22
Study of clothing quality control and analysis	
Abdullayev R.	
Theoretical basis of technological parameters of the new pneumo-mechanical gin machine	28
Bakhritdinov B.	33
Increase production volume by regeneration of cotton	
Otamirzayev A.	38
Measures to dangermine during the initial processing of cotton	
Kamolova M., Abdulkarimova M., Maksudov Sh.	42
Measures to dangermine during the initial processing of cotton	
Shogofurov Sh., Jurabayev N., Xolikov K.	
Analysis of the technology of obtaining knitted fabrics with patterns and their physical and mechanical properties	55
Jurabayev N., Shogofurov Sh., Yusupov S.	
Study of the physical and mechanical properties of hosiery products made from bamboo yarn	64

TECHNICAL SCIENCES: AGRICULTURE AND FOOD TECHNOLOGIES

Nasriddinov B., Serkaev Q., Yo'lchiev A.	70
Effect of solvent compositions on oil indicators in cotton oil extraction	
Yulchiev A., Yuldashev Sh.	79
Economic efficiency in the production of cream-perfumed soap	
Ikromova Y., Ikromov F., Khamdamov A., Xudayberdiyev A.	85
Modeling of primary distillation process of vegetable oil micella	
Ismailov M., Adashev B.	
Prevention of external flood formation on the surface of heat exchanger pipes	92

CHEMICAL SCIENCES

Tajibayeva N., Ergashev O.	
Nanofibers based on chitosan and synthetic polymers: a review of properties and applications	99

Kuchkarova D., Soliyev M., Ergashev O.

Quantitative determination of adsorption activity of adsorbents obtained on the basis of cotton stalk and cotton boll **104**

Abdullaxanova G., Ergashev O.

Differential heat and entropy of adsorption of methanethiol in sodalite **112**

Paygamova M., Khamzakhojayev A., Ochilov A., Paygamov R.

Physicochemical properties of carbon adsorbents derived from renewable biomass **121**

Kochkarova R.

Use of electron spectra in determining the coordination number of central atoms of complex compounds based on Ni(II) and Co(II) ions **131**

Yusupova M., Mamadjonova M., Egamberdiev S., Abduvohidov I.

Study of the conditions for the aminolysis of secondary polycarbonate **136**

Ikramova G., Askarova O., Siddikov D., Karimov A., Botirov E.

Chemical components of perovskia kudrjashevii **142**

Kaxarova M., Soliyev M.

Types of plant growth regulators and their application in agriculture **147**

Juraboev F.

Investigation of the synthesis of acetylene amino alcohols and the study of their biological activity **151**

Salikhanova D., Usmonova Z.

Thermal activation of plums **155**

Kadirxanov J., Urinov A.

Development of composite materials for corrosion protection of main gas and oil pipelines with increased chemical adhesion **160**

Sotiboldiev B.

Synthesis of hybrid composites of polysaccharides based on methyltrimethoxysilane **167**

Jumayeva D., Nomonova Z.

Chemical characterization of raw materials used for adsorbent production **174**

Muratova M.

Method for producing a fire retardant agent with nitric acid solutions of various concentrations **183**

Shamuratova M., Abdikamalova A., Eshmetov I.

Physicochemical properties and results of sem analysis of soils in the regions of Karakalpakstan **192**

Dadakhanova G., Soliev M., Nurmonov S.

Composition of oil products and methods of separation of individual substances **199**

Hoshimov F., Bektemirov A., Ergashev O.

206

Effectiveness of the drug "Akaragold 72%" against cotton spider mites

Abdirashidov D., Turaev Kh., Tajiiev P.

Analysis of the physicochemical properties of polyvinyl chloride and the **213**
importance of mineral fillers in increasing its fire resistance

TECHNICAL SCIENCES: MECHANICS AND MECHANICAL ENGINEERING

Makhmudjonov M., Muminov Kh., Tilavkhanova L.

219

Classification and analysis of level measurement methods

Mukhammadjanov M.

Digital modeling of the heat transfer process in oil power transformers in **226**
operation

Mukhtorov D.

Investigation of drying efficiency in a solar installation with composite **230**
polyethylene film depending on the product thickness

Tursunov A., Shodmanov J.

Advancing sustainable environmental strategies in the cotton industry **239**
through dust emission reduction

Saidov O.

Event-driven process orchestration in e-governance: modeling **247**
asynchronous integration patterns

Obidov A., Mamajanov Sh.

Organization of scientific and research processes based on information and **252**
digital technologies in higher education

Turdaliyev V., Akbarov A., Toychieva M.

Theoretical study of the vibration of chain networks **259**

Abdusattarov B., Xamidov S.

Modeling the process of separating cotton particles from air in the working **265**
chamber of a cotton gin

Toirov O., Amirov S., Khalikov S.

Diagnostics of the condition of elements of electric power supply substation **272**

ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCATION

Mukhtorov D., Jamoldinov K.

281

Development and improvement of drying technologies in a solar dryer

Uzokov F.

Graphical solution of systems of equations in two-and three-dimensional **291**
spaces using MS excel

ECONOMICAL SCIENCES

Yuldashev K., Kodirov X.

Financing of pre-school educational institutions based on public-private partnerships and their results **299**

Boltaboev D.

Specific aspects of labor resource management in different countries **304**