

Scientific and Technical Journal Namangan Institute of Engineering and Technology

UDK 677.21:021

THEORETICAL SUBSTANTIATION OF THE PNEUMOMECHANICS OF THE CZECH GIN FOR THE SEPARATION OF FIBER FROM SEEDS

ABDULLAYEV RAVSHAN

PhD, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0891) 050-6210, E-mail.: rabdullayev@gmail.com

Abstract: The increase in the mass of the cotton pieces slows down the movement and the speed of movement. This, in turn, has a positive effect on the ginning process. From the graphs of the distance traveled and the speed, it can be seen that the ginning process in the first and second pairs of cylinders is more intense than in the third and fourth pairs of cylinders, i.e. 80% of the ginning occurs in the first and second pairs of cylinders. We can observe this situation by the parabolic law of the graph of the dependence of the distance traveled on time, and the graph of the dependence of the speed on time - by the law of the increasing

Keywords: raw cotton, pneumatic mechanical gin, theory, dependence, speed, percentage, time, graph, cylinder, movements.

Introduction. To create a model of one seed in existing gins, it is necessary to determine the volume of seeds for a given variety of cotton. We determine this using the following equation:

$$V_c = \frac{m_c}{v_c}$$
, m³

Where: мс- seed mass, g;

 γ_c – seed density, g/m³.

Volume of compacted seed:

$$V_1 = \frac{m_1}{v_1}, \, \mathrm{m}^3$$

Where: m_1 – mass of one seed, g;

 γ_1 - density of one seed, g/m³.

The volume of cotton fibers in one seed is determined by the following formula:

$$V_{\rm B} = V_1 - V_c$$
, m⁸.

During the cotton ginning process, the thickness (r) of the fibrous coating on the surface of the seeds can be determined based on the diagram shown in Figure 1.

Let the volume of fiber in one seed be equal to:

$$V = 4\pi \cdot r(ac + r)(bc + r), m^3$$

where: a is the length of one seed, mm; b is the width of the hollow part of the Vshaped seed, mm; c is the width of the upper part of the seed, mm; r is the thickness of the fibrous layer on the surface of one seed, mm.

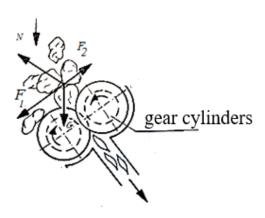
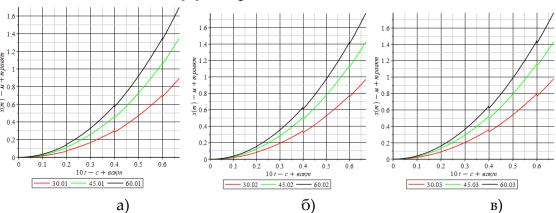
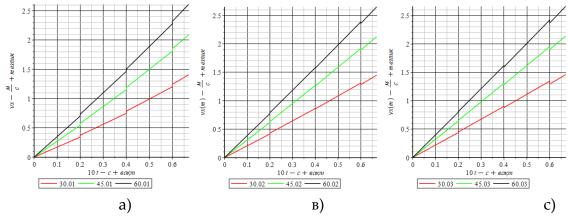



Fig. 1. Model of one seed


Graphs of the change in the traveled distance and speed of fibrous seeds during the ginning process along its surface depending on time at different angles of inclination of the ginning roller cylinder were obtained.

Initial conditions: $v(0) = v_0 x(0) = 0$.

Fig. 2. Graphs of changes in the distance traveled and the speed of fibrous seeds during the ginning process, along its surface depending on time at different angles of inclination of the ginning toothed pair of cylinders

In the schedule: 1) $\alpha = 32^{\circ}$, 2) $\alpha = 45^{\circ}$, 3) $\alpha = 60^{\circ}$, a) m=0.01r; 6)m=0.02r; c)m=0.03r;

Fig. 3. Graphs of the change in the speed of fibrous seeds during the ginning process, along its surface depending on time at different angles of inclination of the ginning cylinders

Vol. 10 Issue 1 www.niet.uz 2025

In the schedule: $\alpha = 32^{\circ}$, 2- $\alpha = 45^{\circ}$, 3- $\alpha = 60^{\circ}$, a) -m=0.01r;6)-m=0.02r; c)-m=0.03r;

Cleaning of cotton pieces starting from the first cylinder and continuing in subsequent cylinders depends on changing the tilt angle of the device (without changing the cotton speed). When changing the tilt angle from 320 to 600, cotton is fed to the first, second, third and fourth pairs of rollers within 4.5-5.5 seconds.

From the graphs in Fig. 2-3 a, b, c, it is evident that the increase in the mass of the pieces of cotton slows down the movement and the speed of movement. This, in turn, has a positive effect on the ginning process. From the graphs of the distance traveled and the speed, it can be seen that the ginning process in the first and second pairs of cylinders is more intense than in the third and fourth pairs of cylinders, i.e. 80% of the ginning occurs in the first and second pairs of cylinders. We can observe this situation according to the parabolic law of the graph of the dependence of the distance traveled on time, and the graph of the dependence of the speed on time - according to the law of the increasing straight line.

During the process of separating the fiber from the seed, the cotton flow speed reaches 0.5 m/s in 1-2-section cylinders, 2.3 m/s in 3-4-section rollers, which leads to full cotton feed and increased productivity.

It is known that when the analytical expression of the output function is unknown, this function can be expressed as a polynomial regression equation.

$$y = b_{0} + \sum_{i=1}^{k} b_{i} X_{i} + \sum_{i=1}^{k} b_{ii} X_{i}^{2} + \sum_{i<1}^{k} b_{ij} X_{i} X_{j} + \sum_{i< j < l}^{k} b_{ijl} X_{i} X_{j} X_{l}$$

$$(1)$$
Where:
$$b_{0} = \frac{1}{N} \sum_{u=1}^{N} \overline{y}_{u}, \qquad b_{i} = \frac{1}{N} \sum_{u=1}^{N} X_{iu} \overline{y}_{u},$$

$$b_{ij} = \frac{1}{N} \sum_{u=1}^{N} X_{iu} X_{ju} \overline{y}_{u}, \qquad b_{ijk} = \frac{1}{N} \sum_{u=1}^{N} X_{iu} X_{ju} X_{ku} \overline{y}_{u}$$

Where: y - calculated value of the output parameter; X_i - an independent input parameter whose value changes during the experiment.

 $b_{\scriptscriptstyle 0}$, $b_{\scriptscriptstyle i}$, $b_{\scriptscriptstyle ij}$, $b_{\scriptscriptstyle ijkb}$ - regression coefficients determined based on the results of the experiment. To construct a mathematical model in the form of equation (1), the output value "y" is selected. The variable xi factor is selected as the input parameter.

 b_0 , b_i , b_{ij} , b_{ijkb} - are considered as regression coefficients and the type of plan function is determined.

To write an experimental plan and process the experimental results, coded values of factors, indicated in small letters, are used. X_1 , X_2 . Encoded Xi (dimensionless quantity) and physical (natural) variable X_i are related by the following relationship.

$$X_i = \frac{x_i - x_{i0}}{\Delta i} \tag{2}$$

Where: $\Delta_{u} = \frac{x_{\text{max}} + x_{\text{min}}}{2}$ - interval of variation of natural value;

xio – natural value of zero power;

 $x_{i0} = \frac{x_{\text{max}} - x_{i \text{min}}}{2}$, $x_{i \text{max}}$ $x_{i \text{min}}$ - natural value of the lower and upper levels of the factor.

To determine the regression equation, we construct a two-level matrix

(k = 2) three-factor experiment for each function based on the responses. Through \bar{y}_{ui} , we determine the corresponding values of the coefficient of variation for the amount of fiber y_{0ui} , obtained in parallel experiments, each of which was determined in the r experiment. Thus, $y_{ui} = \frac{1}{n} \sum_{i=1}^{n} y_{0ul}$, (l = 1.2...m) was taken into account when conducting two experiments.

If we check by Fisher's criterion, F_{α,k_1,k_2} according to the table value, here α significant level, we find $k_1 = N - k - 1 = 4$, $k_2 = N(m-1) = 16$ from the table. If this is an inequality $F < F_{\alpha,k_1,k_2}$ is fulfilled, then the adequacy hypothesis is fulfilled. Because F_{α,k_1,k_2} = 3.01 , Fisher's criterion is appropriate for both cases.

$$X_3 = -1(x_3 = 30^\circ)$$

Summary

- The density of the cleaned seeds is higher than the total density of cotton pieces, and the resistance forces with the equipment are small, it falls under the action of its weight.
- During the process of separating the fiber from the seed, the cotton flow speed reaches 0.5 m/s in 1-2-section cylinders, and 2.3 m/s in 3-4-section rollers, which leads to full cotton feed and increased productivity.
- To write an experimental plan and process the experimental results, coded values of factors, indicated in small letters, are used. X_1, X_2 .

References:

https://www.lex.uz/ru/docs/5731033, Пахта-тўқимачилик кластерлари 1. фаолиятини тартибга солиш чора-тадбирлари тўғрисида.

Узбекистон Республикаси Президентининг Фармони, 16.11.2021 йилдаги ПФ-14-сон.

Р.К.Абдуллаев, Р.М.Мурадов, Б.Т.Алиев. Пахта чиқиндилари таркибидаги йигирувга яроқли толаларни ажратиш қурилмаси. Бухоро мухандислик-технология институти. "Илмий тадқиқот ва кадрлар тайёрлаш тизимида инновацион хамкорликни ривожлантиришнинг муаммолари ва истиқболлари" мавзусида халқаро илмий-амалий анжумани материаллари. Бухоро, 24-25 ноябр 2017 йил, 102-105 бет.

280 Vol. 10 Issue 1 www.niet.uz

- Б.Т.Алиев, Р.К.Абдуллаев, Р.М.Мурадов. Пахта толасини чигитдан 3. ажратишда янги пневмомеханик жин машинасининг яратилиши ва тадқиқотлар таҳлили. Ўзбекистон табиий толалар илмий тадқиқот институти, халқаро илмийтехникавий анжуман. "Туқимачилик саноати корхоналарида ишлаб чиқаришни ташкил этишда илм-фан интеграциялашувини ўрни ва долзарб муаммолар ечими" (ЎзТТИТИ-80) материаллар тўплами. Тўқимачилик материаллари технологияси 2-қисм. Марғилон, 27-28 июл 2017 йил 106-111 бет.
 - Х.Т.Ахмадходжаев, А.А.Обидов, Р.К. Абдуллаев, М.И.Охунжонова.

Пахта толаси таркибидаги калта толалар фоизини камайтириш борасидаги олиб борилаётган илмий-тадқиқот ишлар ва натижалар тахлили. Наманган мухандислик-технология институти илмий-техника журнали. "Ишлаб чиқариш технологияси муммолари" Том 4 №1 2019 3-7 бет.

Р.К.Абдуллаев, Х.Т.Ахмеджоджаев, М.И.Охунова, М.М.Султонов.

Пахтани жинлаш жараёнида жин машинасининг селекция навлар бўйича тола сифатига таъсирини таҳлил қилиш. Наманган муҳандислик-технология институти илмий-техника журнали. "Ишлаб чиқариш технологияси муммолари" Том 4 №2 2019 21-27 бет.

- Р.К.Абдуллаев, Р.М.Мурадов, М. Н. Салохиддинова. Пахта толаси сифатини илм-фан оширилишида ва ишлаб чиқариш интеграцияси "Инновацион ривожланиш истиқболлари. даврида интенсив ёндашув истиқболлари" халқаро анжумани. Наманган, 2018 йил 10-11 июл, 246-247 бет.
- 7. Р.К.Абдуллаев, А.А.Обидов, Р.М.Мурадов. Пахтани қайта ишлаш инновацион технологияларини яратилишида саноат ва илм-фан ўртасидаги кооперацияни йўлга қўйиш истиқболлари. "Инновацион ривожланиш даврида интенсив ёндашув истиқболлари" халқаро анжумани. Наманган, 10-11 июль 394-398 бет.
- 8. М.М.Султонов, Р.К.Абдуллаев. Тўқимачилик кластери комплекслари технологик жараёнларида тола йўқотилиши кескин камайтириш чоратадбирлари. Наманган муҳандислик-технология институти илмий-техника журнали. "Ишлаб чиқариш технологияси муммолари" Том 4 №3 2019 66-73 бет.
- Х.Т.Ахмедходжаев, Р.К.Абдуллаев, О.Ш.Саримсоқов, М.И.Охунжонова. Пахта толаси сифат кўрсаткичларини халқаро универсал стандарт бўйича аниқланишида "сифат" сертификатлаш маркази билан хамкорлик интеграциясини мустахкамлаш истиқболлари. Наманган мухандисликтехнология институти илмий-техника журнали. НамМТИ, 2018 й. 4-сон 25-31 бет.

CONTENTS

TECHNICAL SCIENCES: COTTON, TEXTILE AND LIGHT **INDUSTRY** Rakhimov R., Sultonov M. 3 Inspection of the strength of the column lattice of the improved fiber cleaner Turdiev B., Rosulov R. The influence of technological parameters of the elevator on cotton seed **10** damage Khuramova Kh. 15 Graphic analysis of the obtained results on cotton regeneration Sharifbayev R. 20 Optimizing feature extraction in Ai-based cocoon classification: a hybrid approach for enhanced silk quality Akramov A., Khodzhiev M. The current state and challenges of the global textile industry: key directions 24 for the development of Uzbekistan's textile sector TECHNICAL SCIENCES: AGRICULTURE AND FOOD **TECHNOLOGIES** Sattarov K., Jankurazov A., Tukhtamyshova G. 30 Study of food additives on bread quality Madaminova Z., Khamdamov A., Xudayberdiyev A. Determination of amygdalin content in peach oil obtained by pressing 37 method Kobilov N., Dodayev K. 43 Food safety and industrial importance of corn starch, the impact of the hydration process on the starch content in the grain Mustafaev O., Ravshanov S., Dzhakhangirova G., Kanoatov X. 50 The effect of storing wheat grain in open warehouses on the "aging" process of bread products Erkayeva N., Ahmedov A. 58 Industrial trials of the refining technology for long-term stored sunflower oil Boynazarova Y., Farmonov J. 64 Microscopic investigations on the effect of temperature on onion seed cell degradation Rasulova M., Xamdamov A. 79 Theoretical analysis of distillators used in the distillation of vegetable oil miscella

CHEMICAL SCIENCES	
Ergashev O., Bazarbaev M., Juraeva Z., Bakhronov H., Kokharov M.,	
Mamadaliyev U.	84
Isotherm of ammonia adsorption on zeolite CaA (MSS-622)	
Ergashev O., Bakhronov H., Sobirjonova S., Kokharov M.,	
Mamadaliyev U.	93
Differential heat of ammonia adsorption and adsorption mechanism in Ca ₄ Na ₄ A zeolite	70
Boymirzaev A., Erniyazova I.	
Recent advances in the synthesis and characterisation of methylated chitosan derivatives	101
Kalbaev A., Mamataliyev N., Abdikamalova A., Ochilov A.,	
Masharipova M.	106
Adsorption and kinetics of methylene blue on modified laponite	
Ibragimov T., Tolipov F., Talipova X.	
Studies of adsorption, kinetics and thermodynamics of heavy metall ions on	114
clay adsorbents	
Muratova M.	
Method for producing a fire retardant agent with nitric acid solutions of	123
various concentrations	
Shavkatova D.	132
Preparation of sulphur concrete using modified sulphur and melamine	
Umarov Sh., Ismailov R.	
Analysis of hydroxybenzene-methanal oligomers using ¹ h nmr spectroscopy	139
methods	
Vokkosov Z.	
Studying the role and mechanism of microorganisms in the production of	148
microbiological fertilizers	
Mukhammadjonov M., Rakhmatkarieva F., Oydinov M.	153
The physical-chemical analysis of KA zeolite obtained from local kaolin	100
Shermatov A., Sherkuziev D.	
Study of the decomposition process of local phosphorites using industrial	160
waste sulfuric acid	
Khudayberdiev N., Ergashev O.	
Study of the main characteristics of polystyrene and phenol-formaldehyde	168
resin waste	

TECHNICAL SCIENCES: MECHANICS AND MECHANICAL ENGINEERING

Kudratov Sh.	
UZTE16M locomotive oil system and requirements for diesel locomotive	174
reliability and operating conditions	
Dadakhanov N.	181
Device studying the wear process of different materials	
Dadakhanov N., Karimov R.	189
Investigation of irregularity of yarn produced in an improved drawn tool	
Mirzaumidov A., Azizov J., Siddiqov A.	106
Static analysis of the spindle shaft with a split cylinder	196
Mirjalolzoda B., Umarov A., Akbaraliyev A., Abduvakhidov M.	202
Static calculation of the saw blade of the saw gin	203
Obidov A., Mirzaumidov A., Abdurasulov A.	
A study of critical speed of linter shaft rotation and resonance phenomenon	208
Khakimov B., Abdurakhmanov O.	
Monitoring the effectiveness of the quality management system in	217
manufacturing enterprises	
Bayboboev N., Muminov A.	
Analysis of the indicators of the average speed of units for the process of	232
loading into a potato harvesting machine	
Kayumov U., Kakhkharov O., Pardaeva Sh.	
Analysis of factors influencing the increased consumption of diesel fuel by	237
belaz dump trucks in a quarry	
Abdurahmonov J.	
Theoretical study of the effect of a brushed drum shaft on the efficiency of	244
flush separation	
Ishnazarov O., Otabayev B., Kurvonboyev B.	
Modern methods of smooth starting of asynchronous motors: their	250
technologies and industrial applications	
Kadirov K., Toxtashev A.	263
The influence of the cost of electricity production on the formation of tariffs	
Azambayev M.	271
An innovative approach to cleaning cotton linters	
Abdullayev R.	
Theoretical substantiation of the pneumomechanics of the Czech gin for the	277
separation of fiber from seeds	
Siddikov I., A'zamov S.	282
Study of power balance of small power asynchronous motor	202

Obidov A., Mirzaakhmedova D., Ibrohimov I.	288	
Theoretical research of a heavy pollutant cleaning device		
Xudayberdiyeva D., Obidov A.	_	
Reactive power compensation and energy waste reduction during start-up	294	
of the electric motor of uxk cotton cleaning device		
Jumaniyazov K., Sarbarov X.		
Analysis of the movement of cotton seeds under the influence of a screw	302	
conveyor		
Abdusalomova N., Muradov R.		
Analysis of the device design for discharging heavy mixtures from the sedimentation chamber	310	
Ikromov M., Shomurodov S., Boborajabov B., Mamayev Sh.,		
Nigmatova D.	318	
Study of obtaining an organomineral modifier from local raw materials to	310	
improve the operational properties of bitumen		
Ikromov M., Shomurodov S., Boborajabov B., Mamayev Sh.,		
Nigmatova D.	324	
Development of composition and production technology for polymer-		
bitumen mixtures for automobile roads		
Muradov R., Mirzaakbarov A.	332	
Effective ways to separate fibers suitable for spinning from waste material		
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION	
Xoliddinov I., Begmatova M.		
A method of load balancing based on fuzzy logic in low-voltage networks	336	
with solar panel integration		
Murodov R., Kuchqarov A., Boynazarov B., Uzbekov M.		
Research on the efficiency of using hydro turbines in pumping mode and for	345	
electricity generation		
Abdurakhimova M., Romanov J., Masharipov Sh.		
A literature review of settlement land trends (past, present, and future)	353	
based on english-language articles indexed in the web of science database	333	
from 2014 to 2023		
Muhammedova M.		
Development and scientific justification of the design of orthopedical	360	
footwear for patients with injuries to the soul-foot joint		
100twear 101 patients with injuries to the sour-100t joint		
Akbaraliyev M., Egamberdiyev A.	267	
•	367	

2025

411

A'zamxonov O., Egamberdiyev A.	
Principles of organizing material and technical support in emergency situations	373
Tuychibayeva G., Kukibayeva M.	
The module of developing communicative competence of seventh and eighth-grade students in uzbekistan secondary schools	379
Ismoilova Z.	202
Methods for enhancing the competence of future english teachers	383
ECONOMICAL SCIENCES	
Yuldashev K., Makhamadaliev B.	
The role of small business entities in the program "From poverty to well-	389
being"	
being"	397
being" Mirzakhalikov B.	397
being" Mirzakhalikov B. Organizational mechanism for the development of state programs for	397