

Scientific and Technical Journal Namangan Institute of Engineering and Technology

DIFFERENTIAL HEAT OF AMMONIA ADSORPTION AND ADSORPTION MECHANISM IN Ca₄Na₄A ZEOLITE

ERGASHEV OYBEK

Professor, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0895) 303-3565, E-mail.: okergashev711@gmail.com

BAKHRONOV HAYOT

Associate Professor, Tashkent University of Information Technologies named after Muhammad al-Khwarizmi, Tashkent, Uzbekistan Phone.: (0897) 710-3758, E-mail.: baxronov@mail.ru
*Corresponding author

SOBIRJONOVA SURAYYO

PhD student, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0891) 182-7242, E-mail.: sobirjonovasurayyo59@gmail.com

KOKHAROV MIRZOKHID

Associate Professor, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0893) 572-0208, E-mail.: mirzo199008@mail.ru

MAMADALIYEV UTKURBEK

Independent Researcher, Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0893) 446-3333, E-mail.: mamadaliyev1989@mail.ru

Abstract: This article presents the experimentally obtained values of differential enthalpy of ammonia adsorption at 303 K in Ca₄Na₄A (Horst-50/50) zeolite of the LTA type. The enthalpy values were measured using a modified Tian-Calvet-type DAC-1-1A microcalorimeter connected to a universal high-vacuum device. The regular relationship between the amount of ammonia adsorption and differential enthalpy in Ca₄Na₄A (Horst-50/50) zeolite, as well as the adsorption mechanism from the initial region to the condensation heat of ammonia, and the filling of the zeolite volume by ammonia molecules, was determined. Under experimental conditions, the adsorption capacity of Ca₄Na₄A (Horst-50/50) zeolite for ammonia was found to be 8.8 mmol/g. The differential heat values were found to vary according to the number of Na⁺ and Ca²⁺ cations in the zeolite structure, with ammonia molecules forming pentameric 5NH₃:Na⁺ ion-molecular complexes with sodium cations and dimeric 3NH₃:Ca²⁺ ion-molecular complexes with calcium cations in the first coordination sphere of the zeolite.

Keywords: adsorption, enthalpy, free energy, isotherm, pressure, relative pressure, microcalorimeter, ammonia.

Introduction. Worldwide, the process of obtaining purified gas from natural gas without adequately removing additional chemical components, as well as the release of harmful gases into the atmosphere from the combustion of secondary gases in industrial and manufacturing processes, is leading to increasing environmental issues each year. The combustion of naturally occurring gases with various compositions results in the release of sulfur compounds and nitrogenous compounds that are hazardous to human health and plant life. Additionally, the emission of large amounts of carbon (IV) oxide into the atmosphere negatively affects human health. Consequently, the global demand for solutions to prevent environmental problems is increasing year by year. Millions of tons of synthetic zeolites are produced to address these issues, specifically for the purification and drying of gases from various unwanted components. In particular,

synthetic zeolites play an indispensable role in the oil and gas industry due to their exceptional adsorption and catalytic properties. This, in turn, necessitates the synthesis of a new generation of zeolites with high adsorption and catalytic efficiency and the practical application of research aimed at enhancing their selectivity characteristics.

At present, zeolites are widely used as adsorbents and catalysts in natural gas drying, petroleum, and petrochemical processing industries. To enhance and scientifically substantiate the catalytic activity of zeolites, it is essential to continuously conduct fundamental research on the theoretical principles of sorption processes using modern scientific research methods. The widespread industrial application of zeolites and their use as catalysts have become the focus of interest and research for many scientists [1].

X-ray structural analysis has revealed that aluminosilicate zeolites of types A, X, and Y are composed of cubic-octahedral structural units. Each cubic-octahedral unit consists of 24 structural element tetrahedra formed by AlO₄ Ba SiO₄ groups, in which oxygen ions are shared among tetrahedra. Each cubic-octahedral unit is connected by 36 oxygen ions and contains 240 ions (Al + Si), forming a stable structure. Each cubic-octahedral unit consists of six four-membered and eight six-membered rings [2].

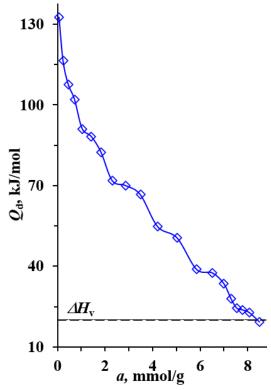
The AlO₄ and SiO₄ oxides in the zeolite framework have a negative charge of "minus one." Consequently, the tetrahedral zeolite framework requires the presence of an equivalent amount of cations to balance this charge. This requirement is related to the need to compensate for the excess electron charge in the Al₂O₄ tetrahedral groups. The aluminum atom (Al) has three independent s- and p-electrons, and through interactions with four surrounding oxygen atoms, it forms equal-value electron pairs, gaining one additional electron in the process [3].

The structural difference between A and X zeolites lies in the spatial arrangement of cubic-octahedral structural units within their framework [2, 4, 5]. In type A zeolites, the cubic-octahedral units form a simple cubic lattice, where each unit is connected to six neighboring units through four-membered oxygen-bridged rings. The voids between the eight cubic-octahedral units form large cavities [3]. The amount of negative charge in the crystal lattice of a zeolite depends on the Si/Al ratio, and different amounts of cations are introduced to fully or partially compensate for this charge. These cations may be alkali metals or alkaline earth metals, and depending on the type of cation, the adsorption and catalytic properties of zeolites vary. Before being used in various industrial sectors, the adsorption properties of zeolites must be thoroughly studied.

In LTA-type zeolites, Ca²⁺ and Na⁺ cations serve as the main active sites. The amount of adsorbate molecules adsorbed depends on the quantity and ratio of these cations. By determining the fundamental thermodynamic characteristics of adsorption for polar molecules such as water and ammonia, the number, nature, and strength of energetically active centers in crystallographic positions of the same type can be identified [6-15]. Scientific studies have investigated the adsorption of various physicochemical substances on LTA-type zeolites using methods such as NMR, SEM, X-ray structural analysis, IR spectroscopy, and gas chromatography [1, 3-4]. However, these methods are not

sufficient for studying the adsorption energetics of different molecules on adsorbents and for determining the mechanism of the sorption process. The use of a high-vacuum adsorption calorimetric device for studying adsorption energetics is expected to yield more precise results.

This article presents the enthalpy and isotherm results of ammonia adsorption on synthetic Ca₄Na₄A (Horst-50/50) zeolite obtained through adsorption calorimetric experiments, as well as the adsorption mechanism.


Research methods and materials. For measurements of isotherms and differential adsorption heats, a system consisting of a universal high-vacuum adsorption unit and a Tian-Calvet-type, DAK-1-1A thermally conductive differential microcalorimeter connected to it was used, which has high accuracy and stability. The instrument's calorimeter sensitivity is extremely high, and its reliability is high. It can be used confidently to measure the heat of processes of almost unlimited duration. The calorimeter makes it possible to obtain the thermokinetics of the process of adsorption systems under study, which is very important for elucidating the adsorption mechanism. Most of the heat (about 99%) released into the calorimeter chamber is dissipated into the calorimeter block immediately after release. Only about 1% of the heat released remains in the calorimeter chamber, raising its temperature slightly. The measurement is mainly concerned with the heat flux that passes through the surface of the calorimeter chamber and the calorimeter block. The adsorption-calorimetric method used in this work provides highly accurate molar thermodynamic characteristics and reveals detailed mechanisms of adsorption processes occurring on adsorbents and catalysts. Adsorption measurements and adsorbate dosing were carried out using a universal high-vacuum adsorption unit. The unit allows adsorbate dosing by both gas-volume and volume-liquid methods. We used a BARATRON B 627 membrane pressure gauge to measure the equilibrium pressures.

The adsorption of ammonia on Ca₄Na₄A (Horst-50/50) zeolite at 303 K was investigated, and the adsorption isotherm was fully analyzed. The unit cell composition of this zeolite is expressed as Ca₄Na₄[(AlO₂)₁₂(SiO₂)₁₂]). Based on its chemical composition, the amount of calcium and sodium cations in 1 gram of zeolite is 2.38 mmol/g. However, the active adsorption sites in the zeolite are located at S_I, S_{II}, and S_{III} positions, with ammonia molecules being adsorbed only at the S_I and S_{II} positions. Therefore, not all calcium and sodium cations present in the zeolite participate in the adsorption process.

Results. The dependence of the differential heat of adsorption of ammonia on the adsorption amount in Ca₄Na₄A (Horst-50/50) zeolite is presented in Figure 1. Researchers have shown that the stepwise variation of enthalpy for various physicochemically different molecules adsorbed on synthetic zeolites such as MFI, MOR, FAU, and LTA correlates with the number of cations in their structure [6-22]. For example, in the case of ammonia adsorption on CaA (M-22) zeolite, the formation of the first step in differential enthalpy at an adsorption amount of 0.76 mmol/g corresponds to the number of sodium cations in the zeolite structure and indicates the formation of an adsorbate/adsorbent monomeric 1NH₃:Na⁺ ion-molecular complex. As the zeolite becomes saturated, enthalpy

changes stepwise at 1.5 mmol/g adsorption to form a dimeric 2NH3:Na+ complex, at 2.3 mmol/g adsorption to form a trimeric 3NH₃:Na⁺ complex, and at 3.0 mmol/g adsorption to form a tetrameric 4NH₃:Na⁺ ion-molecular complex with a wave-like enthalpy change. Additionally, the partial increase in enthalpy (by 2.7 kJ/mol) during the formation of trimeric 3NH3:Na+ and tetrameric 4NH3:Na+ complexes was attributed to additional energy release due to weak Van der Waals interactions between ammonia molecules. The stepwise change in differential enthalpy up to an adsorption amount of 3.0 mmol/g corresponds to the number of sodium cations (0.76 mmol/g), confirming that ammonia is initially adsorbed only on sodium cations. Subsequent changes in differential enthalpy at adsorption amounts of 1.9 mmol/g indicate ammonia sorption on calcium cations, with the formation of monomeric 1NH₃:Ca²⁺ and dimeric 2 NH₃:Ca²⁺ ion-molecular complexes at adsorption amounts of 4.9 mmol/g and 6.4 mmol/g, respectively. Notably, two ammonia molecules adsorbed on calcium cations interact with additional ammonia via Van der Waals forces, leading to the formation adsorbent/adsorbate/adsorbate complex Ca²⁺:2NH₃:2NH₃ and, in general, an adsorbate/zeolite complex 8NH3:CaA (M-22).

Figure 1. Differential heat of adsorption (*Q*_d) of ammonia on Ca₄Na₄A (Horst-50/50) zeolite at 303 K. The dashed line represents the condensation heat of ammonia at 303 K

However, the sorption mechanism observed in the present study for Ca₄Na₄A (Horst-50/50) zeolite differs significantly from previously reported mechanisms. At the initial stage, a differential heat (enthalpy) of ~133 kJ/mol was recorded at an adsorption

amount of 0.07 mmol/g. This high value is explained by the additional interaction of ammonia molecules with OH-hydroxyl groups in the crystal structure (Figure 1).

As the amount of adsorption increases, the differential enthalpy value decreases. At approximately ~1,1÷1,2 mmol/g adsorption, the first stage occurs at 92 kJ/mol. With the saturation of the sorption volume, the second stage appears at 2.2 mmol/g adsorption, where the enthalpy decreases to approximately ~80 kJ/mol. The third stage forms at ~3.2÷3.8 mmol/g adsorption with an enthalpy of 70 kJ/mol, followed by the fourth stage at ~4.6 mmol/g, the fifth at 5.5 mmol/g, and the sixth, seventh, and eighth stages at adsorption amounts of 6.8 mmol/g, 7.7 mmol/g, and 8.8 mmol/g, respectively.

Based on the chemical composition of the Ca₄Na₄A (Horst-50/50) zeolite studied in this research, the amount of calcium and sodium cations in 1 g of zeolite is equal, at 2.38 mmol/g each. The active sites of the zeolite consist of SI, SII, and SIII positions, but adsorbate molecules can only be adsorbed at the active sites in SI and SII positions. This indicates that not all calcium and sodium cations in the zeolite structure participate fully in the adsorption process. This raises an important question: To what extent do ammonia molecules form ion-molecular mechanisms with calcium and sodium cations in different ratios? Do ammonia molecules adsorb first onto calcium cations or sodium cations?

From Figure 1, the stepwise change in the amount of ammonia molecule adsorption as a function of differential enthalpy is approximately ~1.1 mmol/g. This indicates that 1.1 mmol/g of calcium and sodium cations in the zeolite structure act as the primary active sites in the sorption process. The linear variation in the isotherm of ammonia adsorption in Ca₄Na₄A (Horst-50/50) up to 5.5 mmol/g suggests that in LTA-type zeolites, polar molecules such as water and ammonia are initially adsorbed onto sodium cations due to their small size and high surface charge density. Consequently, within the adsorption range of 1.1-5.5 mmol/g, ammonia molecules sequentially form ion-molecular complexes with sodium cations, ranging from 1NH3:Na+ monomer to 5NH3:Na+ pentamer.

At higher adsorption levels, the differential enthalpy of ammonia adsorption approximates the adsorption enthalpy observed in CaA (M-22) and CaA (M-34) zeolites, indicating that the next ammonia molecules are adsorbed onto calcium cations. As the sorption volume becomes saturated, at 6.8 mmol/g, the differential enthalpy decreases to 38 kJ/mol, forming a monomeric complex 1NH₃:Ca²⁺ at stage 6. At 7.8 mmol/g, the differential enthalpy decreases to 25 kJ/mol, forming a dimeric complex 2NH₃:Ca²⁺. At 8.8 mmol/g, ammonia molecules form a trimeric complex 3NH₃:Ca²⁺, marking the completion of the sorption process on calcium cations in this zeolite. In general, in Ca4Na4A (Horst-50/50) zeolite, ammonia molecules form 8NH3:CaA (Horst-50/50) ionmolecular complexes in the adsorbate/zeolite system.

Conclusion. The differential enthalpy of ammonia adsorption in the nanostructured Ca4Na4A (Horst-50/50) zeolite was studied using the adsorptioncalorimetric method. Within the experimental pressure range (up to 567 torr), the sorption process mechanism and the filling pattern of the zeolite volume by ammonia molecules were determined. At low saturation levels, ammonia molecules were found to

form pentameric 5NH₃:Na⁺ and trimeric 3NH₃:Ca²⁺ ion-molecular complexes with sodium and calcium cations in the S_I and S_{II} positions of the zeolite's first coordination sphere. No ammonia adsorption was observed in the second coordination sphere of the zeolite. Overall, it was confirmed that ammonia molecules in Ca₄Na₄A (Horst-50/50) zeolite form ion-molecular complexes of the type 8NH₃:CaA (Horst-50/50) in the adsorbate/zeolite system.

References

- 1. Corma A., D.Kumar. Micro- and Meso-Porous Materials as Catalysts. In "New Trends in Material Chemistry"; 1997, vol. 498: pp.403-408.
- 2. J.V. Smith, "Zeolite Structure." Chemistry of Zeolites and Catalysis on Zeolites, Moscow, "Mir," 1980, pp. 11-14.
- 3. Ohman L., Ganemi B., Bjornbom E., Rahkamaa K., Keiski R., Paul J. "Catalyst preparation through ionexchange of zeolite Cu-, Ni-, Pd-, CuNi- and CuPdZSM-5". Mater. Chem. Phys. Vol. 73. 2002. P. 263- 267.
- 4. Liyan Q., Murashov V., White M.A. "Zeolite 4A: heat capacity and thermodynamic properties". Solid State Sciences; 2000, №2: pp.841-846.
- 5. Baerlocher C., McCusker L.B., Olson D.H. "Atlas of Zeolite Framework Types", 6th edn., Elsevier, Amsterdam, 2007: p.399.
- 6. Ergashov O.K., Khokharov M.Kh., Abdurakhmonov E.B. "Energy of Carbon Dioxide Adsorption in CaA Zeolite." *Universum: Chemistry and Biology: Scientific Journal*, 2019, 7(61), pp. 23-26.
- 7. Khokharov M.Kh., Akhmedov U.K., Rakhmatkarieva F.G., Abdurakhmonov E.B. "Energy of Carbon (IV) Oxide Adsorption on Ca4Na4A Zeolite." *Namangan Engineering-Technological Institute Scientific-Technical Journal*, 2020, 1(5), pp. 142-148.
- 8. Kokharov M.X., Axmedov U.K., Rakhmatkarieva F.G., Abdurakhmonov E.B. "Investigation of water sorption to Ca₅Na₃A zeolite at adsorption of micro calorimetric device". International Journal of Advanced Research in Science, Engineering and Technology; 2020, 5(7): pp.13939-13944.
- 9. Abdurakhmonov E.B., Rakhmatkarieva F.G., Yakubov Y.Y., Abdulhaev T.D., Khudaybergenov M.S. "Differential Heats of Adsorption of Benzene Vapors in LiLSX Zeolite." *Universum: Chemistry and Biology*, 2020, 6(72), pp. 60-63.
- 10. Abdurakhmonov E.B., Ergashov O.K. "Thermokinetics of Ammonia Adsorption in NaLSX Zeolite." *Universum: Chemistry and Biology*, 2020, 8(74), pp. 5-8.
- 11. Abdurakhmonov E.B. "Entropy of Benzene Adsorption in NaLSX Zeolite." *Universum: Chemistry and Biology*, 2020, 8(74), pp. 12-15.
- 12.Abdurakhmonov E.B., Rakhmatkarieva F.G., Ergashev O.K. "Determination of ammonia's adsorption properties in NaLSX zeolite by calorimetric method". International Journal of Materials and Chemistry; 2020, 10(2): c.17-22.
- 13. Abdurakhmonov E.B. "Thermodynamics of benzene adsorption in NaLSX zeolite". International Journal of Advanced Research in Science". Engineering and Technology; 2020, 7(10): pp. 15314-15320

- 14. Rakhmatkariyeva F.G., Abdurakhmonov E.B., Yakubov Y.Y. "Volumetric Analysis of Benzene Vapor Adsorption on LiLSX Zeolite in a High Vacuum Adsorption Device". International Journal of Advanced Science and Technology; 2020, 8(29): pp. 3442-3448.
- 15. Abdurakhmonov E.B., Rakhmatkarieva F.G., Ergashev O.K., Ochilov G.M. "Energetic Characteristics Of The Process Of Adsorption Of Benzene In Zeolites NaX And NaY". International Journal of Future Generation Communication and Networking; 2020, 4(13): pp. 246–252.
- 16. Ergashev O., Bakhronov Kh., Akhmedova N., Abdullayeva Sh., Khalilov S. and Kholikov K. "Calorimetric study of methanol adsorption in LiZSM-5 and CsZSM-5 zeolites". E3S Web Conferences 401, 02023 of (2023),https://doi.org/10.1051/e3sconf/202340102023
- 17. Bakhronov Kh., Ergashev O., Sultonov A., Kholmedov H., Ganievand A., Asfandiyorov M. "Basic thermodynamic characteristics and isotherm of ammonia adsorption in NaZSM-5 and LiZSM-5 zeolites". E3S Web of Conferences 401, 02025 (2023), https://doi.org/10.1051/e3sconf/202340102025
- 18. Abdulkhaev T., Nuridinov O., Bakhronov Kh. "Differential heats of orta-xylene in zeolite AgZSM-5". E-Global Congress Hosted online from Dubai, U.A.E., E-Conference; 2023: pp.120-122. https://eglobalcongress.com/index.php/egc/article/view/54/49
- 19. Abdulkhaev T., Kuldasheva Sh., Bakhronov Kh., Ganiev A. "Enthalpy and the mechanism of water adsorptionin zeolite AgZSM-5". International Conference on Developments in Education Hosted from Saint Petersburg. -Russia; 2023: pp.81-84, https://www.econferencezone.org/index.php/ecz/article/view/2024/1877
- 20. Esonkulova N., Ahkmadov M., Bakhronov Kh. "Isotherm adsorption of toluene and zeolite Cu²⁺ZSM-5". International Conference on Developments in Education Hosted Delhi. -India; 2023: from pp.49-52, https://econferencezone.org/index.php/ecz/article/view/2137
- 21. Esonkulova N., Kh.Bakhronov, Absalyamova I., Ahkmadov M. "Entropy and thermokinetics of toluene adsorption on Cu2+ZSM-5 zeolite". International Conference on Developments in Education Hosted from Bursa. -Turkey; 2023: pp.40-44, https://econferencezone.org/index.php/ecz/article/view/2137
- 22. Boddenberg B., Rakhmatkariev G.U., Viets J., Bakhronov Kh.N. "Statistical thermodynamics of ammonia-alkali cation complexes in zeolite ZSM-5". Proceeding 12th International Zeolite Conference, 1998, USA, p.481-488.
- 23. Rakhmatkariyeva F.G., Koxxarov M.X., Bakhronov Kh.N. Isotherm Of Ammonia Adsorption In Zeolite CaA (M-22) //Scientific and Technical Journal Namangan Institute of Engineering and Technology Volume 8, Issue 4, 2023 y. pp.103-109.
- 24. Rakhmatkarieva F., Kokhkharov M., Bakhronov Kh., Differential heat and mechanism of ammonia adsorption on zeolite CaA (M-22) //International Journal of Advanced Research in Science, Engineering and Technology Vol. 10, Issue 11, 2023,

99 Vol. 10 Issue 1 www.niet.uz 2025

pp.21258-21261.

- 25. Reymov A., Raxmatkarieva F., Koxxarov M., Bakhronov Kh., Isotherm of ammonia adsorption in zeolite CaA (M-34) //Science and Education in Karakalpakstan, 2024, №3/2, ISSN 2181-9203, pp.257-262.
- 26. Kokhkharov M., Rakhmatkarieva F., Bakhronov Kh., Rakhmatullaeva M, Absalyamova I., Karimov Y. Differential entropy and thermokinetics of ammonia molecule adsorption on CaA zeolite (M-22) //E3S Web of Conferences 563, 01024, ICESTE 2024.
- 27.Kokhkharov M., Rakhmatkarieva F., Bakhronov Kh., Akhmedova N., Rakhmatullaeva M., Karimov Y. Adsorption isotherm, differential heat, and sorption mechanism of ammonia on CaA zeolite //E3S Web of Conferences 587, 01017 Green Energy 2024.

CONTENTS

TECHNICAL SCIENCES: COTTON, TEXTILE AND LIGHT **INDUSTRY** Rakhimov R., Sultonov M. 3 Inspection of the strength of the column lattice of the improved fiber cleaner Turdiev B., Rosulov R. The influence of technological parameters of the elevator on cotton seed **10** damage Khuramova Kh. 15 Graphic analysis of the obtained results on cotton regeneration Sharifbayev R. 20 Optimizing feature extraction in Ai-based cocoon classification: a hybrid approach for enhanced silk quality Akramov A., Khodzhiev M. The current state and challenges of the global textile industry: key directions 24 for the development of Uzbekistan's textile sector TECHNICAL SCIENCES: AGRICULTURE AND FOOD **TECHNOLOGIES** Sattarov K., Jankurazov A., Tukhtamyshova G. 30 Study of food additives on bread quality Madaminova Z., Khamdamov A., Xudayberdiyev A. Determination of amygdalin content in peach oil obtained by pressing 37 method Kobilov N., Dodayev K. 43 Food safety and industrial importance of corn starch, the impact of the hydration process on the starch content in the grain Mustafaev O., Ravshanov S., Dzhakhangirova G., Kanoatov X. 50 The effect of storing wheat grain in open warehouses on the "aging" process of bread products Erkayeva N., Ahmedov A. 58 Industrial trials of the refining technology for long-term stored sunflower oil Boynazarova Y., Farmonov J. 64 Microscopic investigations on the effect of temperature on onion seed cell degradation Rasulova M., Xamdamov A. 79 Theoretical analysis of distillators used in the distillation of vegetable oil miscella

CHEMICAL SCIENCES	
Ergashev O., Bazarbaev M., Juraeva Z., Bakhronov H., Kokharov M.,	
Mamadaliyev U.	84
Isotherm of ammonia adsorption on zeolite CaA (MSS-622)	
Ergashev O., Bakhronov H., Sobirjonova S., Kokharov M.,	
Mamadaliyev U.	93
Differential heat of ammonia adsorption and adsorption mechanism in Ca ₄ Na ₄ A zeolite	70
Boymirzaev A., Erniyazova I.	
Recent advances in the synthesis and characterisation of methylated chitosan derivatives	101
Kalbaev A., Mamataliyev N., Abdikamalova A., Ochilov A.,	
Masharipova M.	106
Adsorption and kinetics of methylene blue on modified laponite	
Ibragimov T., Tolipov F., Talipova X.	
Studies of adsorption, kinetics and thermodynamics of heavy metall ions on	114
clay adsorbents	
Muratova M.	
Method for producing a fire retardant agent with nitric acid solutions of	123
various concentrations	
Shavkatova D.	132
Preparation of sulphur concrete using modified sulphur and melamine	
Umarov Sh., Ismailov R.	
Analysis of hydroxybenzene-methanal oligomers using ¹ h nmr spectroscopy	139
methods	
Vokkosov Z.	
Studying the role and mechanism of microorganisms in the production of	148
microbiological fertilizers	
Mukhammadjonov M., Rakhmatkarieva F., Oydinov M.	153
The physical-chemical analysis of KA zeolite obtained from local kaolin	100
Shermatov A., Sherkuziev D.	
Study of the decomposition process of local phosphorites using industrial	160
waste sulfuric acid	
Khudayberdiev N., Ergashev O.	
Study of the main characteristics of polystyrene and phenol-formaldehyde	168
resin waste	

TECHNICAL SCIENCES: MECHANICS AND MECHANICAL ENGINEERING

Kudratov Sh.	
UZTE16M locomotive oil system and requirements for diesel locomotive	174
reliability and operating conditions	
Dadakhanov N.	181
Device studying the wear process of different materials	
Dadakhanov N., Karimov R.	189
Investigation of irregularity of yarn produced in an improved drawn tool	
Mirzaumidov A., Azizov J., Siddiqov A.	106
Static analysis of the spindle shaft with a split cylinder	196
Mirjalolzoda B., Umarov A., Akbaraliyev A., Abduvakhidov M.	202
Static calculation of the saw blade of the saw gin	203
Obidov A., Mirzaumidov A., Abdurasulov A.	
A study of critical speed of linter shaft rotation and resonance phenomenon	208
Khakimov B., Abdurakhmanov O.	
Monitoring the effectiveness of the quality management system in	217
manufacturing enterprises	
Bayboboev N., Muminov A.	
Analysis of the indicators of the average speed of units for the process of	232
loading into a potato harvesting machine	
Kayumov U., Kakhkharov O., Pardaeva Sh.	
Analysis of factors influencing the increased consumption of diesel fuel by	237
belaz dump trucks in a quarry	
Abdurahmonov J.	
Theoretical study of the effect of a brushed drum shaft on the efficiency of	244
flush separation	
Ishnazarov O., Otabayev B., Kurvonboyev B.	
Modern methods of smooth starting of asynchronous motors: their	250
technologies and industrial applications	
Kadirov K., Toxtashev A.	263
The influence of the cost of electricity production on the formation of tariffs	
Azambayev M.	271
An innovative approach to cleaning cotton linters	
Abdullayev R.	
Theoretical substantiation of the pneumomechanics of the Czech gin for the	277
separation of fiber from seeds	
Siddikov I., A'zamov S.	282
Study of power balance of small power asynchronous motor	202

Obidov A., Mirzaakhmedova D., Ibrohimov I.	288	
Theoretical research of a heavy pollutant cleaning device		
Xudayberdiyeva D., Obidov A.	_	
Reactive power compensation and energy waste reduction during start-up	294	
of the electric motor of uxk cotton cleaning device		
Jumaniyazov K., Sarbarov X.		
Analysis of the movement of cotton seeds under the influence of a screw	302	
conveyor		
Abdusalomova N., Muradov R.		
Analysis of the device design for discharging heavy mixtures from the sedimentation chamber	310	
Ikromov M., Shomurodov S., Boborajabov B., Mamayev Sh.,		
Nigmatova D.	318	
Study of obtaining an organomineral modifier from local raw materials to	310	
improve the operational properties of bitumen		
Ikromov M., Shomurodov S., Boborajabov B., Mamayev Sh.,		
Nigmatova D.	324	
Development of composition and production technology for polymer-		
bitumen mixtures for automobile roads		
Muradov R., Mirzaakbarov A.	332	
Effective ways to separate fibers suitable for spinning from waste material		
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION	
Xoliddinov I., Begmatova M.		
A method of load balancing based on fuzzy logic in low-voltage networks	336	
with solar panel integration		
Murodov R., Kuchqarov A., Boynazarov B., Uzbekov M.		
Research on the efficiency of using hydro turbines in pumping mode and for	345	
electricity generation		
Abdurakhimova M., Romanov J., Masharipov Sh.		
A literature review of settlement land trends (past, present, and future)	353	
based on english-language articles indexed in the web of science database	333	
from 2014 to 2023		
Muhammedova M.		
Development and scientific justification of the design of orthopedical	360	
footwear for patients with injuries to the soul-foot joint		
100twear 101 patients with injuries to the sour-100t joint		
Akbaraliyev M., Egamberdiyev A.	267	
•	367	

2025

411

A'zamxonov O., Egamberdiyev A.	
Principles of organizing material and technical support in emergency situations	373
Tuychibayeva G., Kukibayeva M.	
The module of developing communicative competence of seventh and eighth-grade students in uzbekistan secondary schools	379
Ismoilova Z.	202
Methods for enhancing the competence of future english teachers	383
ECONOMICAL SCIENCES	
Yuldashev K., Makhamadaliev B.	
The role of small business entities in the program "From poverty to well-	389
being"	
being"	397
being" Mirzakhalikov B.	397
being" Mirzakhalikov B. Organizational mechanism for the development of state programs for	397