

Scientific and Technical Journal Namangan Institute of Engineering and Technology

UDC: 541.183:536.658

WATER VAPOR ADSORPTION ISOTHERM IN ZEOLITES REGENERATED BY MICROWAVE THERMOXIDATION **METHOD**

ERGASHEV OYBEK

Professor of Namangan Institute of Engineering and Technology, Namangan Uzbekistan E-mail.: okergashev711@gmail.com

MAXMUDOV INOMION

PhD student of Namangan Institute of Engineering and Technology, Namangan Uzbekistan Phone .: (0890) 629-4027 *Corresponding author

Abstract: The research work carried out experimental work on the regeneration of synthetic zeolites of type A. Synthetic zeolites used in industry for drying and cleaning natural gas were regenerated by thermal and thermooxidation methods. The structure, adsorption capacity and chemical composition of the regenerated zeolites were studied. Work was carried out to improve the process by accelerating the regeneration by the thermooxidation method using microwaves.

Keywords: regeneration, synthetic zeolite, CaA, NaA, NaX, thermal oxidation, microwaves6 adsorption calorimeter.

Introduction. Molecular sieves (zeolites) of the CaA, NaA and especially NaX brands are widely used as adsorbents for drying and purifying high-sulfur natural and petroleum gases. Their adsorption capacity largely depends on the content of H₂O, CO₂ and higher hydrocarbons in gases, operating conditions and the degree of purification and ranges from 2 to 18%. The presence of heavy hydrocarbon vapors in the gas has a significant effect on the capacity of zeolites for sulfur compounds.

Materials and methods. In the research work, we used the thermal and thermooxidation method to process zeolite samples obtained from gas industry waste, NaA and CaA zeolites, which had lost their adsorption properties, at a temperature of up to 723 K for 2-3 hours. The released gaseous substances were extracted using a vacuum pump. Changes in the adsorption capacities of the samples over time were determined by the microcalorimetric method and compared with the above data.

In the second method, the effect of microwaves on heated zeolite samples was studied. When the ampoule containing the zeolite sample reached a temperature of 323-373 K, radiation was applied using a 915 MHz magnetron. The observed physicochemical changes will serve as the basis for theoretical and practical studies of the mechanisms of the effect of microwaves on adsorbates.

Results. Adsorption methods are based on the selective absorption (adsorption) of sulfur compounds by solid sorbents. As a rule, adsorption is carried out at a temperature of 293–323 K and elevated pressure, and regeneration (desorption) of the adsorbent saturated with sulfur compounds is carried out at low pressure and a temperature of 373-623 K. For regeneration, any of the inert gases, low-sulfur natural or petroleum gas, water vapor, etc. are passed through the adsorbent layer [1–3].

Molecular sieves (zeolites) of the CaA, NaA and especially NaX brands are widely used as adsorbents for drying and purifying high-sulfur natural and petroleum gases. Their adsorption capacity largely depends on the content of H₂O, CO₂ and higher hydrocarbons in gases, operating conditions and the degree of purification and ranges from 2 to 18%. The presence of heavy hydrocarbon vapors in the gas has a significant effect on the capacity of zeolites for sulfur compounds. According to the degree of sorption on zeolites, the compounds that make up natural gas can be arranged in the following order: H₂O>RSH>H₂S>COS>CO₂.

The main problem with adsorption purification of gas on zeolites from hydrogen sulfide in the presence of CO_2 is that during the adsorption of CO_2 and H_2S , carbon oxide disulfide (COS) is formed according to the reaction: $CO_2 + H_2S = COS + H_2O$.

Although the equilibrium constant of this reaction is small and amounts to 6.6·10-6 at 298 K, however, the almost complete removal of H2O vapors in the frontal layer of the zeolite shifts the equilibrium to the right, and this leads to the formation of significant concentrations of COS. Zeolite regeneration is carried out with nitrogen, low-sulfur natural or petroleum gas, and the content of sulfur substances in the regeneration gases (regenerates) increases by 5-10 times compared to the original. In addition to coals and zeolites, aluminum oxide, bauxite, aluminosilicates, etc. are also used in the purification process. The advantage of adsorption methods is the possibility of carrying out the process at low temperatures, as well as fine purification of gases not only from hydrogen sulfide, mercaptans, organic sulfides, but also from such substances that are difficult to remove by other methods as thiophene and its derivatives. This method also has a number of significant disadvantages. Almost all gases contain a certain amount of H2O, CO₂, higher hydrocarbon vapors, which are well adsorbed by coals and zeolites, which reduces the sulfur capacity of adsorbents. The periodic cleaning process requires the installation of several parallel operating columns: some absorb sulfur substances (adsorption stage), and others regenerate adsorbents. [11–13].

In the thermal oxidation process, a mixture of filtered and dried air and nitrogen in a ratio of 1:4 was used. As a result of using this method for CaA, the regeneration process, which lasts a relatively long time, was shortened and the active desorption temperature was reached quickly. The time spent on the process was on average 1.5-2 hours, and the total mass change was 8.5%. At the same time, the separation of relatively light fractions up to 573 K was 7.2%. The process reached 723 K in 2 hours, and active thermal oxidation lasted 1.5 hours.

The adsorption isotherm, differential heat, entropy and thermokinetics of water vapor on regenerated NaX and CaA zeolites were studied. [4–10].

In carrying out the process of determining the full thermodynamic properties of the adsorption of H₂O vapor and CO₂ gases on regenerated zeolites, a system consisting of a universal high-vacuum adsorption device and a Tian-Calve, DAK-1-1 type differential microcalorimeter connected to it was used to measure the differential heats and isotherms of adsorption by the adsorption calorimetric method.

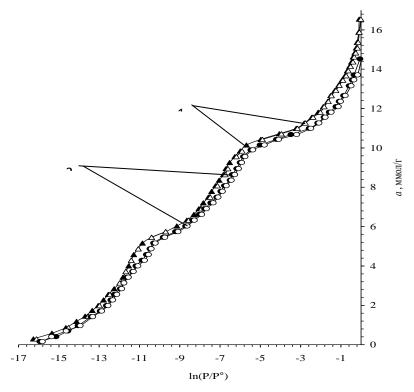


Figure 1 shows the water adsorption isotherm (ln) for water adsorption on CaA zeolite at a temperature of 303 K at a relative pressure of ~10-6 p/p0 (p0 is the saturated water vapor pressure, where p^0 (303K) = 31.8 mm.Hg.). The adsorption amount is expressed in mmol/g. The adsorption isotherm was studied in three parts. In the first part, the adsorption isotherm of water molecules on CaA zeolite initially starts at -16.3 and the adsorption amount is ~0.5 mmol/g. This indicates that one water molecule is adsorbed at every two e.g. The isotherm rises steeply until it reaches -10.76 and the adsorption reaches 4.79 mmol/g. In the second stage, the isotherm partially bends towards the adsorption axis again from -10.40 to -8.30, where the adsorption amount is 6.58 mmol/g. Until the adsorption reaches 6.23 mmol/g., the isotherm rises steeply from -8.30 to -5.7. In the third stage, with the adsorption of the next two water molecules, the isotherm sharply bends towards the ordinate axis, and the isotherm increases from -5.7 to -2.8, resulting in 11.37 mmol/g. With the partial bend of the isotherm, two water molecules are adsorbed, and the equilibrium isotherm index is -1.5. Then, approaching the saturation pressure of water vapor, i.e. up to 29 mm.cm., 4.19 mmol/g of water molecules are adsorbed, resulting in a total of 16.7 Mmol/g in each cell. The process ends with the formation of.

Water adsorption on CaA zeolite was expressed by the TMVF (the theory of micropore volumetric fulling) equation;

 $a = 6.9 \exp[A/32.09)^{6} + 3.62 \exp[A/17.97)^{8} + 5.8 \exp[A/2.87)^{1}$ (1)

 $a=6,19\exp[-A/28,25)^3]+3,38\exp[-A/10,4)^6]+4,68\exp[-A/4,88)^1]$ (2)

Fig. 1. Water adsorption isotherm on CaA zeolite at 303K. (1)- CaA zeolite; (2)-regenerated CaA zeolite

Vol. 9 Issue 4 www.niet.uz 2024

Here, a is the number of water molecules adsorbed in the micropores, i.e. mmol/g, A = RTln $(P^{\circ}/P - 1 \text{ mmol/g})$. The work done to transfer the vapor from the surface (pressure P°) to the equilibrium gas phase (pressure P).

Figure 2 shows the differential heat of adsorption (Qd) of water on CaA zeolite at 303 K. The long lines are the heat of condensation of water at 303 K ($\Delta Hv = 43.5 \text{ kJ/mol}$). Due to the small size of water molecules, they directly enter the zeolite voids and, as a result of their interaction with the oxygen atoms that bind silicon and aluminum during entry, the heat of adsorption is high. It is observed that water molecules are in a mobile state until they are distributed in the cations in the zeolite micropores.

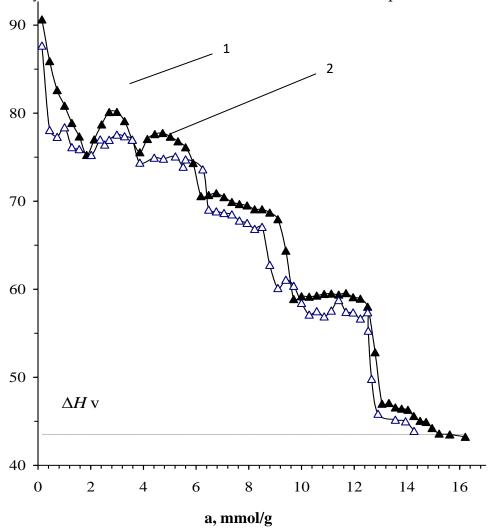


Fig. 2. Differential heat of water adsorption on CaA zeolite at 303K. Horizontal dashed line heat of condensation (1)- CaA zeolite; (2)-regenerated CaA zeolite

The differential heat of adsorption of water on CaA zeolite (starting at 0.14 mmol/g) starts at ~91 kJ/mol and reaches ~0.59 mmol/g, reaching Qd=84 kJ/mol, 1.79 mmol/g. (Qd=~75kJ/mol). The heat of adsorption of the next two molecules (2.99x1.67=5 H2O/e.y.) increases from 75 kJ/mol to 80 kJ/mol, and when 2.14 mmol/g. is formed, the differential heat decreases again to 75 kJ/mol. Up to 6 mmol/g. adsorption, that is, when the next

2.39x1.67=4 water molecules are adsorbed, the heat first increases partially, then decreases to 70 kJ/mol. When 9.58x1.67=16 water molecules are adsorbed, the heat decreases to 59 kJ/mol, forming a step.

Discussion. Until it reaches 12.57 mmol/g. the differential heat of adsorption proceeds almost unchanged. When 13.17 mmol/g is formed, the heat increases again to 47 kJ/mol, and the heat of condensation is equal to the heat of adsorption of the next 2.99x1.67=5 water molecules, i.e., a total of 25 Mmol/g is formed on the active centers of the zeolite. Until the complete adsorption reaches 16.2 mmol/g, the heat is formed by the adsorbate-adsorbate interaction during the adsorption of water molecules.

In the lattice of type A zeolites, not all metal cations are located in the same position. The SI vacancy is located in the center of the six-membered oxygen ring, i.e., the Ca²+I cations are located in the center of this six-membered oxygen ring and almost fill the entire volume. The SII center, where the Ca²+ II cations are located in the plane of the eight-membered oxygen rings, slightly displaced from the center. The SIII center, where the Ca²+ III cations are located opposite the four-membered rings and within the α -spaces, with one Ca²+ cation located approximately 1.7 Å from the plane of the ring. The stepwise appearance of the heat of adsorption is considered to be the stoichiometric interaction of the water molecule with the coordination unsaturated Ca²+ cations. A total of 16.2 mmol/g of water molecules are adsorbed on the CaA zeolite, and 14.4 mmol/g of water molecules on the regenerated CaA zeolite.

The graph expressed in the TMVF equation also corresponds to the isotherm obtained as a result of the experiment. It is also clearly seen that the isotherm changes linearly during the adsorption of the first H₂O molecule, and also increases linearly during the adsorption of the next 4.19*1.67=7 water molecules, and it coincides at each stage.

Conclusion. In the lattice of type A zeolites, not all metal cations are located in the same position. The SI vacancy is located in the center of the six-membered oxygen ring, i.e., the $Ca^{2+}I$ cations are located in the center of this six-membered oxygen ring and almost fill the entire volume. The SII center, where the $Ca^{2+}II$ cations are located in the plane of the eight-membered oxygen rings, slightly displaced from the center. The SIII center, where the $Ca^{2+}III$ cations are located opposite the four-membered rings and within the α -spaces, with one Ca^{2+} cation located approximately 1.7 Å from the plane of the ring. The stepwise appearance of the heat of adsorption is considered to be the stoichiometric interaction of the water molecule with the coordination unsaturated Ca^{2+} cations. A total of 16.2 mmol/g of water molecules are adsorbed on the CaA zeolite, and 14.4 mmol/g of water molecules on the regenerated CaA zeolite.

REFERENCES

1. Гартман В.Л. Динамика хемосорбции серы твёрдым поглотителем и её применение для оптимизации промышленной сероочистки/ Дисс. на соис. уч. степени канд. техн. наук. М.: 2000. 111 с.

- 2. Лазарев В.И. Методы очистки природного газа от сероводорода твердыми сорбентами // Обз. инф. Науч. и техн. аспекты охраны окруж. среды / ВИНИТИ. 1999. № 4. С. 84–113.
- 3. Артамонов В.И., Голосман Е.З., Рубинштейн А.М., Якерсон В.И. Исследование свойств и активности цинковых хемосорбентов на носителях // Изв. АН СССР. Сер. хим. 1986. № 5. С. 988–992.
- 4. Рахматкариев Г.У., Исирикян А.А. Полное описание изотермы адсорбции уравнениями теории объемного заполнения микропор.// Изв. АН СССР, сер. хим. 1988. №11. с.2644 2645.
- 5. Рахматкариева, Ф. Г., Нуридинов, О. К., Эргашев, О. К., & Абдулхаев, Т. Д. (2020). Изотермы и изостеры адсорбции паров воды в цеолитах NaX, CaA И NACaA. *Universum: химия и биология*, (8-2 (74)).
- 6. Рахматкариева, Ф. Г., Нуритдинов, О. К., Эргашев, О. К., & Абдулхаев, Т. Д. (2020). Сопоставление изотерм и термодинамических характеристик адсорбции паров воды в цеолитах NaX, CaA И NaCaA. Кинетика адсорбции. *Universum: химия и биология*, (8-2 (74)).
- 7. Рахматкариева, Ф. Г., Нуритдинов, О. К., Эргашев, О. К., & Абдулхаев, Т. Д. (2020). Сопоставление изотерм и термодинамических характеристик адсорбции паров воды в цеолитах NaX, CaA И NaCaA. Кинетика адсорбции. *Universum: химия и биология*, (8-2 (74)).
- 8. Эргашев, О. К., Коххаров, М. Х., & Абдурахмонов, Э. Б. (2019). Энергетика адсорбции диоксид углерода в цеолите CaA. Universum: химия и биология, (7 (61)).
- 9. Эргашев, О. К., Рахматкариева, Ф. Г., Абдурахмонов, Э. Б., & Мамажонова, М. А. (2018). Ион-молекулярные комплексы в наноструктурированных цеолите нитрит содалит. Universum: Химия и биология, (9), 14-17.
- 10. Элдор, А., Гайрат, Р., Феруза, Р., и Ойбек, Э. (2018). Адсорбционно-микрокалориметрическое исследование состояния и распределения бензола в цеолите LIY. Австрийский журнал технических и естественных наук, (1-2).
- 11. Дидковский А.А. Методы регенерации сорбентов // Современные наукоемкие технологии. 2014. \mathbb{N}^{0} 5-2. С. 101-102.
- 12. Муталов Ш.А., Ниязова М.М., Ниязов Д.Б. Регенерация отработан-ных цеолитов газоперерабатывающей промышленности // Universum: Химия и биология : электрон. научн. журн. 2019. \mathbb{N}^0 11(65). C. 32-34.
- 13. Перспективы регенерации и глубокой переработки дезактивированного цеолита CaA-У в новые адсорбенты // Universum: химия и биология : электрон. научн. журн. Ялгашев Э.Я. [и др.]. 2021. 5(83).
- 14. O. Ergashev, Kh. Bakhronov, Kh. Kholmedov, A. Ganiev, Kh. Karimov, S. Khalilov, Basic energy characteristics and isotherm of methanol adsorption on Cu²⁺ZSM-5 zeolite, E3S Web of Conferences **458**, 02006 (2023), https://doi.org/10.1051/e3sconf/202345802006
- 15. Kh. Bakhronov, O. Ergashev, Kh. Karimov, N. Akhmedova, I. Absalyamova1, Sh. Abdullayeva Differential heats, isotherm and entropies of n- pentane adsorption on

240
Vol. 9 Issue 4 www.niet.uz
2024

LiZSM-5 and CsZSM-5 zeolites, E3S Web of Conferences, **458**, 02008 (2023), https://doi.org/10.1051/e3sconf/202345802008

<u>16.</u> O. Ergashev, Kh. Bakhronov, N. Akhmedova, Sh. Abdullayeva, S. Khalilov, K. Kholikov, Calorimetric study of methanol adsorption in LiZSM-5 and CsZSM-5 zeolites, E3S Web of Conferences, **401**, 02023 (2023), https://doi.org/10.1051/e3sconf/202340102023

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT INDUSTRY

Korabayev Sh.	3
From street traffic to space: innovations in autonomous vehicles	3
Egamov N.	
Investigation of vertical forced vibration in the longitudinal - vertical plane of a	10
binder that softens the crush between cotton rows	
Khamraeva S., Kadirova D., Davlatov B.	
Determination of alternative technological factors for the production of functional	15
fabric with a complex structure	
Khamraeva S., Kadirova D., Daminov A.	21
Designing fabrics for a given stretchability	41
Kuliyev T., Rozmetov R., Tuychiev T., Sharipov Kh.	
The effect of the angle of heat agent supply to the drying - cleaning equipment on	2 8
cotton quality and cleaning efficiency of the equipment	
Abdujabbarov M., Alieva D., Karimov R.	
Determination of the influence of the length of the tested yarn samples on their	35
mechanical characteristics	
Jurayeva M., Nabidjonova N.	
Research on physical and mechanical properties of fabric selected for special	41
clothing of preschool children	
Yangiboev R., Allakulov B., Gulmirzayeva S.	
Studying the alternative technological factors of the loom in the production of	45
textiles based on basalt yarn	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	55
Analysis of the maintechnological parameters of the condenser	33
Mavlyanov A., Mirzaumidov A.	60
The scientific basis of the lightened shaft	60
Elmanov A., Mirzaumidov A.	60
Modeling of laser processing of thin-walled steel gears	69
Nurillaeva Kh., Mirzaumidov A.	77
Cotton cleaner with multifaceted grates	77
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	83
The equation of motion of cotton fiber in the condenser	
Khuramova Kh., Xoshimxojaev M.	89
Progressive method of cotton regeneration	

Abdukarimova M., Lutfullaev R., Usmanova N., Mahsudov Sh.	04
Evaluation of aestheticity of women's dress models based on deep learning models	94
GROWING, STORAGE, PROCESSING AND AGRICULTURAL	
PRODUCTS AND FOOD TECHNOLOGIES	
Zufarov O., Isroilova Sh., Yulchiev A., Serkayev K.	101
Theoretical aspects of obtaining oxidation-stable vegetable oils	101
Toshboyeva S., Dadamirzaev M.	110
Filling sauces for canned fish and their layer kinetics	110
Atamirzaeva S., Saribaeva D., Kayumova A.	115
Prospects for the use of rose hips in food technology	115
Turgunpolatova Sh.	121
Study of the quality of fruit pastela products	141
Sultanov S.	
Analysis of experiments on the process of deodorization of vegetable oil using	126
floating nozzles	
Adashev B.	132
Physical-chemical analysis of oil taken from seeds of safflower	152
Ismailov M.	137
Influence of surface layer thickness on hydraulic resistance of the device	
Khurmamatov A., Boyturayev S., Shomansurov F.	142
Detailed analysis of the physicochemical characteristics of distillate fractions	
Madaminova Z., Khamdamov A., Xudayberdiyev A.	
Preparing peach seed for oil extraction and improving oil extraction through	154
pressing	
Aripova K.	162
Methods of concentration of fruit juices and their analysis	
Djuraev Kh., Urinov Sh.	
Theoretical and experimental study of the crack formation device in the shell of	168
apricot kernels	
CHEMICAL TECHNOLOGIES	
Urinboeva M., Abdikamalova A., Ergashev O., Eshmetov I., Ismadiyarov A.	
Study of the composition and main characteristics of petroleum oils and their emulsions	175
Tursunqulov J., Kutlimurotova N.	
Application of 1-(2-hydroxy-1-naphtoazo)-2-naphthol-4-sulfo acid in amperometric determination of scandium ion	182
Kucharov A.	191

Development of coal enrichment and gas extraction technology for the use of construction materials industrial enterprises Abdulkhaev T., Mukhammadjonov M., Mirzarakhimova F. Isotherm of benzene adsorption and differential heat of adsorption on AgZSM-5 198 zeolite Vladimir L., Eshbaeva U., M.Ergashev Innovative environmental packaging for separating storage of two components, 204 allowing to extend the lifetime without preservatives Kodirov O., Ergashev O. 212 Energetics of adsorption of water molecules to aerosol Yusupov K., Erkabaev F., Ergashev D., Rakhimov U., Numonov M. 219 Synthesis of melamine-formaldehyde resins modified with n-butanol Ergashev O., Abdikamalova A., Bakhronov Kh., Askarova D., Xudoyberdiyev N., Mekhmonkhonov M., Xolikov K. 228 Thermodynamics of Congo red dye adsorption processes on mineral and carbon adsorbents Ergashev O., Maxmudov I. Water vapor adsorption isotherm in zeolites regenerated by microwave 235 thermoxidation method Jumaeva D., Zaripbaev K., Maxmudov F. 242 The elements and oxide content of the chemical composition of the feldspar **MECHANICS AND ENGINEERING** Khudoyberdiev U., Izzatillaev J. 249 Analysis of research on small wind energy devices Atajonova S. Mathematical model of system analysis of technological processes in the form of 258 key principles for effective decision-making Kuchkarbayev R. Mathematical modeling of heat transfer through single-layer and multi-layer 264 cylindrical walls in buildings and structures Atambaev D. Difference in the length of individual yarn composition of twisted mixed yarn and 269 comparative analysis of single-thread elongation deformations Abdullayev S. Modeling the functionalities of an automated system for managing movement in 276 the air Turakulov A. Describing computational domains in applications for solving three-dimensional 285 problems of technological processes Mamaxonov A.

Mathematical model of machine aggregate of tillage equipment process	293
Khudayberdiyev A.	20/
Technical and economic aspects of processing pyrolysis distillate into motor fuel	304
Abdurahmonov J.	311
Research results on the selection of the mesh surface of a lint-cleaning device	311
Vohidov M.	
Development of a program for determining eccentricity by analyzing the magnetic field in the air gap of an asynchronous motor	319
Utaev S., Turaev A.	
Analysis of methods and prospects for application of optical methods for control of working surfaces of cylinder liners of internal combustion engines	327
Boltabayev B.	
Determination of seed damage in the pneumatic transport system by conducting experiments	335
Azizov Sh., Usmanov O.	- 220
Simulation of equation of motion of the new construction gin machine	339
Sharibaev N., Homidov K.	
Theoretical analysis of the coefficient of friction induced by the pressure force of a vertical rope acting from above and below	347
Aliyev B., Shamshitdinov M.	356
Improvement of the linter machine and development of its working scheme	330
Mukhametshina E.	362
Analysis of cotton flow behavior in different pneumatic pipes	302
Yangiboev R., Allakulov B.	369
Obtaining and analyzing correlational mathematical models of the sizing process	
Mirzakarimov M.	379
Efficient separation of fibers from saw teeth in the newly designed gin machine	
Azambayev M.	387
Measures to improve the quality of fluff	
Abdullayev R.	392
Scientific innovative development of cotton gining	
Kholmirzaev F.	397
Air flow control factors in pneumatic transport device	
Sharibaev N., Makhmudov A.	-
Separation of cotton from airflow in pneumatic transport systems of the cotton industry	404
Sharibaev N., Mirzabaev B.	

Effect of steam temperature on yarn moisture regulation in textile industry	410	
Sultanov S., Salomova M., Mamatkulov O.	415	
Increasing the useful surface of the mesh surface		
Muhammedova M.	401	
Kinematics of the foot in a healthy person's foot and ankle injury	421	
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCATION		
Abdullayev H.	- 420	
Algorithm for creating structured diagrams of automatic control systems	429	
Kodirov D., Ikromjonova N.	437	
On delayed technological objects and their characteristics		
Uzokov F.	_	
Graphing circles, parabolas, and hyperbolas using second-order linear equations	444	
in excel		
ECONOMICAL SCIENCES		
Zulfikarova D.	440	
Issues of developing women's entrepreneurship	449	
Ergashev U., Djurabaev O.		
Methods for assessing the effectiveness of waste recycling business activities in the	455	
environmental sector		