

Scientific and Technical Journal Namangan Institute of Engineering and Technology

ADSORPTION AND KINETICS OF METHYLENE BLUE ON MODIFIED LAPONITE

KALBAEV ALISHER

Institute of General and Inorganic Chemistry, Namangan, Uzbekistan Phone.: (0599) 452-9726, E-mail.: qalbaev.alisher.98@gmail.com
ORCID: 0009-0004-3655-0538
*Corresponding author

MAMATALIYEV NOZIM

Institute of General and Inorganic Chemistry, Namangan, Uzbekistan Phone.: (0594) 137-9075, E-mail.: mamataliyev@gmail.com

ORCID: 0000-0003-1029-2695

ABDIKAMALOVA AZIZA

Institute of General and Inorganic Chemistry, Namangan, Uzbekistan Phone.: (0594) 137-9075, E-mail.: aziza.abdik@gmail.com

ORCID: 0000-0002-1775-3039

OCHILOV AKBARJON

Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0594) 279-6997, E-mail.: ochilovakbarjon95@gmail.com

MASHARIPOVA MAVJUDA

Namangan Institute of Engineering and Technology, Namangan, Uzbekistan

Abstract: This investigation presents the findings on the adsorption and kinetics of methylene blue using a modified laponite-based adsorbent. The research demonstrated that methylene blue could be effectively adsorbed from aqueous solutions. The adsorption processes were analyzed based on Langmuir and Freundlich isotherm models, with the pseudo-second-order kinetic model showing the best fit to the data. Due to its high surface area and efficient ion-exchange capacity, the modified laponite can serve as an alternative adsorbent in water purification processes. The results highlight the potential of laponite for environmentally safe removal of dyes from industrial wastewater.

Keywords: Laponite, methylene blue, adsorption, kinetics.

Introduction. Worldwide, over 10,000 types of dyes are produced annually, exceeding 700,000 tons (7 × 10⁵ tons), and are widely used in various industries such as textiles, paper, food, and pharmaceuticals. Effluents discharged from industrial facilities are often contaminated with colored compounds and toxic components, necessitating specialized treatment processes before being released into natural water bodies. However, due to the highly complex composition of these effluents, their effective treatment remains a challenging technological task. Wastewater may contain both organic and inorganic dye components as well as non-biodegradable compounds. Specifically, methylene blue (MB), a cationic dye containing nitrogen groups, exhibits high chemical stability and resistance to solar radiation. Consequently, the development and implementation of efficient methods for wastewater treatment remain pressing scientific and technological challenges [2-3].

Adsorption processes play a crucial role in various fields, particularly in environmental protection, chemical industries, biological systems, and technological operations. In recent years, significant research has been conducted on the efficient adsorption of anionic and cationic dyes and the investigation of their kinetic properties. The primary requirements for these processes include the use of economically viable and environmentally safe materials [4-6].

Laponite is a synthetic clay mineral structurally similar to natural hectorite. Both clays belong to the smectite group of phyllosilicates and are characterized by layered 2:1 crystal units. These structures consist of two tetrahedral silicon sheets sandwiching a central octahedral sheet of Mg²⁺ ions (Figure 1). Due to its high surface area, similar to other natural montmorillonites, laponite exhibits excellent adsorption properties. Its ability to adsorb cationic and anionic active substances makes it widely used for the efficient adsorption of pollutants, particularly dyes, from liquids.

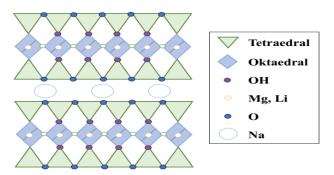


Figure 1. Structure of Laponite

Dyes are widely used in the chemical industry and pose significant environmental challenges due to their resistance to biodegradation. Cationic dyes, such as methylene blue, and anionic dyes, such as Congo red, are extensively utilized in the chemical, textile, and food industries. The release of these dyes into water bodies can pose threats to living organisms and harm ecological systems [7-8].

General name	Methylene blue
Chemical name	3,7-bis(Dimethlamino)-phenazathionium
	chloride tetramethylthionine chloride
Chemical formula	C ₁₆ H ₁₈ ClN ₃ S
Molecular weigth (g/mol)	319.85
Molecular diameter (nm)	0.80
λ_{max} (nm)	668
Chemical structure	H ₃ C N CH ₃ CH ₃ CH ₃

Vol. 10 Issue 1 www.niet.uz 2025

From this perspective, the necessity to improve technologies for dye removal from water through the use of efficient adsorbents such as modified laponite has become a pressing issue. The structure, ion-exchange capacity, and high dispersibility of laponite ensure its effectiveness in adsorbing dyes. The kinetics of the adsorption process, which relates to how quickly the adsorbent captures dyes over a given time, is critical to enhancing the efficiency of the adsorbent and expanding its practical applications.

Materials. Laponite is a synthetic mineral clay with the chemical formula: Na_{0.7}Si₈Mg_{5.5}Li_{0.3}O₂₀(OH)₄. Its point of zero charge (pH_{PZC}) is 11, and its cation exchange capacity (CEC) is 0.55 meq/g. Laponite particles are disk-shaped, with a thickness of 1 nm and a diameter of 25 ± 2 nm [9].

The scanning electron microscopy (SEM) image of raw laponite confirms that the sample consists of large, plate-like aggregates with irregular shapes. The SEM analysis also indicates that these aggregates have a non-uniform structure (Figure 2).

In this study, all methylene blue (MB, C₁₆H₁₈ClN₃S·3H₂O, molecular weight 373.9 g/mol) solutions were prepared by dissolving the required amount of MB in distilled water.

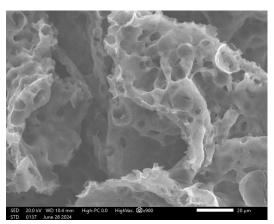


Figure 2. SEM image of raw laponite

Experiment. All adsorption experiments were conducted using 50 mg of a chromium-modified sample and 50 mL of MB solutions with initial concentrations (C₀) ranging from 5 to 20 mg/L in 100 mL glass containers at various temperatures. After reaching equilibrium, the suspensions were separated using a CenLee 20K centrifuge at 12,000 rpm to analyze the dye concentration [6]. The amount of MB adsorbed at equilibrium, qe (mg/g), was calculated using the following equation:

$$q_e = V(C_0 - C_e)/m \tag{1}$$

where C_0 and C_e are the initial and equilibrium dye concentrations (mg/L), V is the volume of the solution (L), and m is the mass of the adsorbent (g). The concentration of MB before and after adsorption was determined using a spectrophotometer at a maximum wavelength of λ = 611 nm.

Adsorption Isotherm. When the adsorption process reaches equilibrium, the adsorption isotherm plays a crucial role in describing how adsorbate molecules are

distributed between the liquid and solid phases. The adsorption isotherms of MB on modified laponite at 298 K are presented in Figure 3. As seen in the figure, the adsorption amount increases with the rise in equilibrium MB concentration within the experimental concentration range. This is attributed to the increasing driving force resulting from the concentration gradient.

Under these conditions, higher MB concentrations in the solution lead to a greater number of active sites on the adsorbent being surrounded by MB ions, making the adsorption process more efficient. As a result, the qe values increased with the rise in equilibrium MB concentration.

From Figure 3, it is evident that the adsorption capacity of MB on laponite at 298 K is 18.5 mg/g. Although the adsorption capacity of MB on modified laponite is not particularly high compared to other adsorbents, laponite stands out as a widely available and cost-effective synthetic material, making it a viable option for removing MB from solutions.

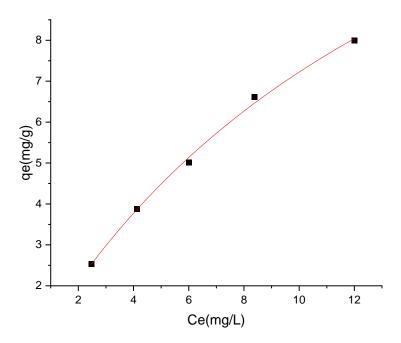


Figure 3. Adsorption Isotherm of MB on Laponite

Analyzing adsorption isotherm data and evaluating their fit with various models is a critical step in identifying a model that can be effectively applied for design purposes. Adsorption equilibrium is a dynamic concept that occurs when the rate of molecular adsorption onto the surface equals the rate of desorption from the surface.

Equilibrium adsorption isotherms are vital for designing adsorption systems, as their shape provides insight into the homogeneity or heterogeneity of the adsorbent surface. Furthermore, correlating equilibrium data with theoretical or empirical

equations is essential for practical applications. The isotherm data were fitted using Langmuir and Freundlich models.

Langmuir Model. The Langmuir model is commonly used to describe the adsorption mechanism, assuming uniform adsorption energies across the surface. The maximum adsorption is determined by the saturation of a monolayer.

$$\frac{1}{q_e} = \frac{1}{q_m} + \frac{1}{C_e \times q_m \times b} \tag{2}$$

Here, qm represents the adsorption capacity (mg/g), and b is the Langmuir isotherm constant (L/mg). The efficiency of the adsorption process can be evaluated using the dimensionless separation factor R_L , calculated based on the b parameter.

A linear plot of $1/q_e$ versus $1/C_e$ results in a straight line (Figure 4a), where the slope corresponds to $1/q_m$. This linear relationship confirms that the adsorption of MB on laponite fits the Langmuir isotherm model.

$$R_L = \frac{1}{1 + b \times C_0} \tag{3}$$

If the R_L values were between 0 and 1, the adsorption process is favorable for the temperature range studied.

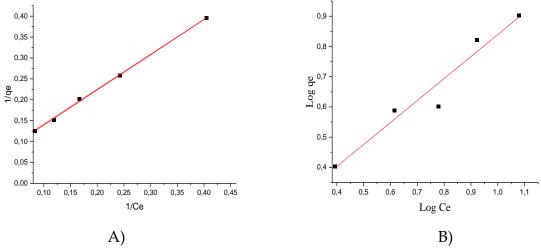


Figure 4. Fit of MB adsorption isotherm to Langmuir (a) and Freundlich (b) models

Freundlich Model. The Freundlich adsorption isotherm describes the adsorption process on heterogeneous surfaces with multilayer adsorption. This linear model is defined by the following equation:

$$\log q_e = \log K + \frac{1}{n} \log C_e \tag{4}$$

Here, q_e is the amount of MB adsorbed per unit mass of the adsorbent (mg/g), Ce is the equilibrium concentration of MB in the solution (mg/L), K represents the adsorption capacity, and 1/n indicates the adsorption intensity.

Vol. 10 Issue 1 www.niet.uz 2025

1.34 0.7366

0.9476

Isotherm Type	Parameter	MB (298 K)
Langmuir	q _{max} (mg/g)	18.13
C	K _L (L/mg)	0.065
	$R_{ m L}$	0.753
	\mathbb{R}^2	0.9986

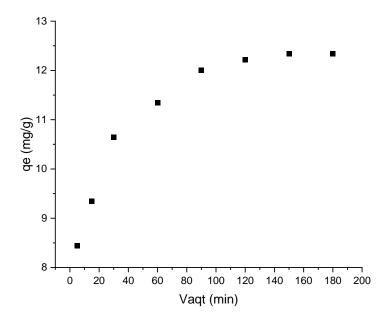
Table 1. Isotherm Parameters for MB Adsorption

Freundlich

Adsorption Kinetics

The pseudo-first-order and pseudo-second-order models were selected as the most suitable for describing the adsorption of methylene blue onto laponite particles based on the linear regression correlation coefficient values, r^2 .

 K_f


1/n R²

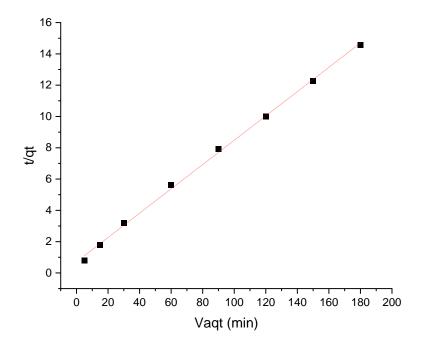
Pseudo-First-Order Kinetic Model. This model is commonly used to describe the adsorption mechanism for various adsorbents. It can be expressed as follows:

$$\ln(q_e - q_t) = \ln q_e - k_1 t \tag{5}$$

Here, k_1 is the pseudo-first-order adsorption rate constant (min⁻¹), while q_e and q_t represent the amount of adsorbate adsorbed per unit mass of the adsorbent at equilibrium and at time t, respectively [10].

The relationship between the adsorption amount, qt (mg/g), and contact time is illustrated in Figure 4. It was observed that the adsorption process progressed rapidly during the initial 60 minutes, followed by a slower rate, eventually reaching a saturation point.

Figure 4. Adsorption of methylene blue on laponite as a function of contact time (adsorbent = 0.05 g, C0 = 20 mg/L, V = 0.05 L)



The calculated qe and k_f values, along with the corresponding linear regression correlation coefficient (R2), are presented in Table 2. The results indicate that as the adsorption amount increased, the rate constant k_f also rose. This finding suggests that the pseudo-first-order model is not applicable for predicting the adsorption kinetics of methylene blue on laponite particles.

Pseudo-Second-Order Kinetic Model. This model is commonly used to describe adsorption processes in aqueous solutions. The linear form of the pseudo-second-order model equation is expressed as:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \tag{6}$$

Here, k_2 is the pseudo-second-order adsorption rate constant (mg·min⁻¹), while q_e and qt represent the amounts of adsorbate adsorbed per unit mass of the adsorbent at equilibrium and at time t, respectively [10].

Figure 5. Adsorption of methylene blue on laponite as a function of contact time (adsorbent = 0.05 g, $C_0 = 20 \text{ mg/L}$, V = 0.05 L)

The calculated q_e and k_2 values, along with the corresponding linear regression correlation coefficient (R2), are summarized in Table 2 (Figure 5). The high correlation coefficients (R² > 0.99) of the pseudo-second-order kinetic model confirm the applicability of this equation and indicate that the adsorption process of methylene blue on laponite follows second-order kinetics.

Table 2. Kinetic parameters for the adsorption of methylene blue on lapon
--

	q _e , (mg/g)	5.64
Pseudo-First-Order	K_1	0.000072
	R ²	0.9657
	$q_e(mg/g)$	12,87333
Pseudo-Second-Order	K ₂	0.00847
	\mathbb{R}^2	0,9984

Conclusion. The studies demonstrated that the modified laponite sample is effective in adsorbing methylene blue from aqueous solutions. The adsorption amount increases with the initial dye concentration and contact time but decreases with an increase in the adsorbent dosage. Kinetic analyses showed that the process conforms to pseudo-second-order kinetics. Modified laponite can be proposed as an efficient alternative adsorbent for wastewater treatment.

References:

- 1. S.Sivamani, G.B. Leena, Removal of Dyes from Wastewater using Adsorption A Review. *International Journal of BioSciences and Technology*. **2**, 47–51 (2009).
- 2. Srivastava, A., Shukla, S., Jangid, N. K., Srivastava, M. & Vishwakarma, R. in *Research Anthology on Emerging Techniques in Environmental Remediation* 493–507 (IGI Global, 2022). doi:10.4018/978-1-6684-3714-8.ch026.
- 3. Mahdavinia, G. R., Soleymani, M., Sabzi, M., Azimi, H., & Atlasi, Z. (2017). Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue. Journal of Environmental Chemical Engineering, 5(3), 2617–2630. https://doi.org/10.1016/j.jece.2017.05.017
- 4. N. Mamataliev, A. Abdikamalova, I. Eshmetov, A. Kalbaev, Adsorption activity of pillared clays with respect to vapors of organic adsorbates. Journal of Chemical Technology and Metallurgy. 58, 1028–1036 (2023).
- 5. R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, H. He, Adsorbents based on montmorillonite for contaminant removal from water: A review, Applied Clay Science, 123, 2016, 239-258.
- 6. N. Mamataliev, A. Kalbaev, I. Eshmetov, S. Kuldasheva, in AIP Conference Proceedings (American Institute of Physics, 2024), vol. 3045.
- 7. 1. Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behavior of methylene blue on carbon nanotubes. *Bioresource Technology*. **101**, 3040–3046 (2010).
- 8. W. Wang *et al.*, Synthesis of chitosan cross-linked 3D network-structured hydrogel for methylene blue removal. *International Journal of Biological Macromolecules*. **141**, 98–107 (2019).
- 9. Chimene, D., Alge, D. L. & Gaharwar, A. K. 2015 Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Advanced Materials 27, 7261–7284.
- 10.Braik, S., Amor, T. B., Michelin, L., Rigolet, S., Bonne, M., Lebeau, B., & Hafiane, A. (2022). Natural water defluoridation by adsorption on Laponite clay. *Water Science and Technology*, 85(6), 1701–1719.

Vol. 10 Issue 1 www.niet.uz 2025

CONTENTS

TECHNICAL SCIENCES: COTTON, TEXTILE AND LIGHT **INDUSTRY** Rakhimov R., Sultonov M. 3 Inspection of the strength of the column lattice of the improved fiber cleaner Turdiev B., Rosulov R. The influence of technological parameters of the elevator on cotton seed **10** damage Khuramova Kh. 15 Graphic analysis of the obtained results on cotton regeneration Sharifbayev R. 20 Optimizing feature extraction in Ai-based cocoon classification: a hybrid approach for enhanced silk quality Akramov A., Khodzhiev M. The current state and challenges of the global textile industry: key directions 24 for the development of Uzbekistan's textile sector TECHNICAL SCIENCES: AGRICULTURE AND FOOD **TECHNOLOGIES** Sattarov K., Jankurazov A., Tukhtamyshova G. 30 Study of food additives on bread quality Madaminova Z., Khamdamov A., Xudayberdiyev A. Determination of amygdalin content in peach oil obtained by pressing 37 method Kobilov N., Dodayev K. 43 Food safety and industrial importance of corn starch, the impact of the hydration process on the starch content in the grain Mustafaev O., Ravshanov S., Dzhakhangirova G., Kanoatov X. 50 The effect of storing wheat grain in open warehouses on the "aging" process of bread products Erkayeva N., Ahmedov A. 58 Industrial trials of the refining technology for long-term stored sunflower oil Boynazarova Y., Farmonov J. 64 Microscopic investigations on the effect of temperature on onion seed cell degradation Rasulova M., Xamdamov A. 79 Theoretical analysis of distillators used in the distillation of vegetable oil miscella

CHEMICAL SCIENCES	
Ergashev O., Bazarbaev M., Juraeva Z., Bakhronov H., Kokharov M.,	
Mamadaliyev U.	84
Isotherm of ammonia adsorption on zeolite CaA (MSS-622)	
Ergashev O., Bakhronov H., Sobirjonova S., Kokharov M.,	
Mamadaliyev U.	93
Differential heat of ammonia adsorption and adsorption mechanism in Ca ₄ Na ₄ A zeolite	70
Boymirzaev A., Erniyazova I.	
Recent advances in the synthesis and characterisation of methylated chitosan derivatives	101
Kalbaev A., Mamataliyev N., Abdikamalova A., Ochilov A.,	
Masharipova M.	106
Adsorption and kinetics of methylene blue on modified laponite	
Ibragimov T., Tolipov F., Talipova X.	
Studies of adsorption, kinetics and thermodynamics of heavy metall ions on	114
clay adsorbents	
Muratova M.	
Method for producing a fire retardant agent with nitric acid solutions of	123
various concentrations	
Shavkatova D.	132
Preparation of sulphur concrete using modified sulphur and melamine	
Umarov Sh., Ismailov R.	
Analysis of hydroxybenzene-methanal oligomers using ¹ h nmr spectroscopy	139
methods	
Vokkosov Z.	
Studying the role and mechanism of microorganisms in the production of	148
microbiological fertilizers	
Mukhammadjonov M., Rakhmatkarieva F., Oydinov M.	153
The physical-chemical analysis of KA zeolite obtained from local kaolin	100
Shermatov A., Sherkuziev D.	
Study of the decomposition process of local phosphorites using industrial	160
waste sulfuric acid	
Khudayberdiev N., Ergashev O.	
Study of the main characteristics of polystyrene and phenol-formaldehyde	168
resin waste	

TECHNICAL SCIENCES: MECHANICS AND MECHANICAL ENGINEERING

Kudratov Sh.		
UZTE16M locomotive oil system and requirements for diesel locomotive		
reliability and operating conditions		
Dadakhanov N.	181	
Device studying the wear process of different materials		
Dadakhanov N., Karimov R.	189	
Investigation of irregularity of yarn produced in an improved drawn tool		
Mirzaumidov A., Azizov J., Siddiqov A.	106	
Static analysis of the spindle shaft with a split cylinder	196	
Mirjalolzoda B., Umarov A., Akbaraliyev A., Abduvakhidov M.	202	
Static calculation of the saw blade of the saw gin	203	
Obidov A., Mirzaumidov A., Abdurasulov A.	200	
A study of critical speed of linter shaft rotation and resonance phenomenon	208	
Khakimov B., Abdurakhmanov O.		
Monitoring the effectiveness of the quality management system in	217	
manufacturing enterprises		
Bayboboev N., Muminov A.		
Analysis of the indicators of the average speed of units for the process of	232	
loading into a potato harvesting machine		
Kayumov U., Kakhkharov O., Pardaeva Sh.		
Analysis of factors influencing the increased consumption of diesel fuel by	237	
belaz dump trucks in a quarry		
Abdurahmonov J.		
Theoretical study of the effect of a brushed drum shaft on the efficiency of	244	
flush separation		
Ishnazarov O., Otabayev B., Kurvonboyev B.	2=0	
Modern methods of smooth starting of asynchronous motors: their	250	
technologies and industrial applications		
Kadirov K., Toxtashev A.	263	
The influence of the cost of electricity production on the formation of tariffs		
Azambayev M.	271	
An innovative approach to cleaning cotton linters		
Abdullayev R.		
Theoretical substantiation of the pneumomechanics of the Czech gin for the		
separation of fiber from seeds		
Siddikov I., A'zamov S.	282	
Study of power balance of small power asynchronous motor	202	

Obidov A., Mirzaakhmedova D., Ibrohimov I.	288
Theoretical research of a heavy pollutant cleaning device	
Xudayberdiyeva D., Obidov A.	
Reactive power compensation and energy waste reduction during start-up	294
of the electric motor of uxk cotton cleaning device	
Jumaniyazov K., Sarbarov X.	
Analysis of the movement of cotton seeds under the influence of a screw	302
conveyor	
Abdusalomova N., Muradov R.	
Analysis of the device design for discharging heavy mixtures from the sedimentation chamber	310
Ikromov M., Shomurodov S., Boborajabov B., Mamayev Sh.,	
Nigmatova D.	318
Study of obtaining an organomineral modifier from local raw materials to	310
improve the operational properties of bitumen	
Ikromov M., Shomurodov S., Boborajabov B., Mamayev Sh.,	
Nigmatova D.	324
Development of composition and production technology for polymer-	
bitumen mixtures for automobile roads	
Muradov R., Mirzaakbarov A.	332
Effective ways to separate fibers suitable for spinning from waste material	
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION
Xoliddinov I., Begmatova M.	
A method of load balancing based on fuzzy logic in low-voltage networks	336
with solar panel integration	
Murodov R., Kuchqarov A., Boynazarov B., Uzbekov M.	
Research on the efficiency of using hydro turbines in pumping mode and for	345
electricity generation	
Abdurakhimova M., Romanov J., Masharipov Sh.	
A literature review of settlement land trends (past, present, and future)	353
based on english-language articles indexed in the web of science database	333
from 2014 to 2023	
Muhammedova M.	
Development and scientific justification of the design of orthopedical	360
footwear for patients with injuries to the soul-foot joint	
100twear 101 patients with injuries to the sour-100t joint	
Akbaraliyev M., Egamberdiyev A.	267
•	367

2025

411

A'zamxonov O., Egamberdiyev A.	
Principles of organizing material and technical support in emergency situations	373
Tuychibayeva G., Kukibayeva M.	
The module of developing communicative competence of seventh and eighth-grade students in uzbekistan secondary schools	379
Ismoilova Z.	202
Methods for enhancing the competence of future english teachers	383
ECONOMICAL SCIENCES	
Yuldashev K., Makhamadaliev B.	
The role of small business entities in the program "From poverty to well-	389
being"	
being"	397
being" Mirzakhalikov B.	397
being" Mirzakhalikov B. Organizational mechanism for the development of state programs for	397