

Scientific and Technical Journal Namangan Institute of Engineering and Technology

OBTAINING AND ANALYZING CORRELATIONAL MATHEMATICAL MODELS OF THE SIZING PROCESS

YANGIBOEV RUZIBOY

Senior Lecturer of Termiz State University of Engineering and Agrotechnology, Termez, Uzbekistan

Phone.: (0891) 580-8891, E-mail.: ryangiboyev@bk.ru

ORCID: 0000000195884723

ALLAKULOV BEGENCH

Termiz State University of Engineering and Agrotechnology, Termez, Uzbekistan Phone.: (0894) 462-5354, E-mail.: allakulovbegench@gmail.com

Abstract: In this article, the influence of incoming and outgoing factors affecting the process of carding yarns in carding machine, as well as the quality of winding on the weaving bobbin, etc., are analyzed. The selected factors in the process of measuring the experiment in accordance with all the requirements of the theory of mathematical planning are the linear density of the yarn, the resistance of the air and the moisture of the raw materials. the possibility of disruption of processes and results is taken into account.

Keywords: yarn, fiber, warp, tension, speed, luquor, wiving, compression, machine, factor.

Introduction. The process of grinding warp yarns on machine sizing depends on the following factors: X₁- fiber content of warp yarns, X₂- warp yarns linear density, X₃- yarns tension, X4- machine speed, X5- room temperature, X6- relative humidity of the room, X7- he quality of the winding on the weaving reel, etc.

For incoming factors concentration of size luquor, %; compression shaft pressure, kPa; The temperature of the middle drum of the sizing machine, C received. The breaking strength of the yarns was taken as the output factors.

The selected factors meet all the requirements of the theory of mathematical planning of the experiment, the factors are not interchangeable with each other, they can be measured with the help of existing tools, in a wide range of minimum and maximum values, and they can be accepted with the necessary accuracy. [1].

During the experiment, factors such as waspr yarns line density, sizing machine speed, room temperature, room relative humidity, warp yarns humidity were kept constant. [2].

In the sizing process, the linear density of waro yarn, the air resistance and the moisture content of the raw material are small influencing factors, taking into account their instability in time and the possibility of distortion of various processes and results in a large number of experiments, their influence mitigated by randomization of experiments [3].

Methodology & empirical analysis. At the first stage, the initial input factors are set. In order to obtain an experimental-statistical mathematical model and determine the degree of influence of various factors on the optimization index, a rotatable central composite experiment was conducted, which not only evaluates the influence of each factor on the optimization index, but also their interaction. allows. Based on the analysis of a priori data, the results of preliminary experiments and the technical capabilities of

the weaving machine, the value and intervals of the main factors were selected, the level of the factors and the intervals are listed in Table 1

A central composite experiment was conducted in a matrix containing three experimental groups that were symmetrical and at different distances from the experimental center. [1].

Table 1. Values of variable factors

Europia antal con ditions	A	ctual valu i-factor	es	oded values are the i- factor		
Experimental conditions	X_1 ,	X_{2}	X_3 ,	24.	24-	24-
	%	kPa	^{0}C	χ_1	χ_2	X 3
The basic level of the factor, X_{ai}	12,22	6	90	0	0	0
The range of variation for the factor, <i>I</i> _i	3	0,5	10	1	1	1
High level of the factor, X _{max}	15,22	6,5	100	+1	+1	+1
The low level of the factor, X _{min}	9,22	5,5	80	-1	-1	-1

The Box 3 planning matrix is used during the experiment to obtain a mathematical model of the technological process.

The results of the experiment were processed in the following sequence

1. Determining the variance of the output parameter is the sum of the squared deviations divided by the number of the corresponding degrees of freedom.

$$S_u^2\{Y\} = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{Y})^2$$

where m = 3 is the number of repetitions in the matrix experiment; N = 14 is the number of experiments in the matrix.

$$S_1^2{Y} = \frac{1}{3-1} \left[(276, 5-276, 5)^2 + (277, 1-276, 5)^2 + (275, 9-276, 5)^2 \right] = 0,36.$$

$$S_2^2\{Y\} = 0,20\;; \quad S_3^2\{Y\} = 0,06\;; \quad S_4^2\{Y\} = 0,12\;; \quad S_5^2\{Y\} = 1,17\;; \quad S_6^2\{Y\} = 0,92\;; \quad S_7^2\{Y\} = 1,47\;; \\ S_8^2\{Y\} = 0,30\;; \quad S_9^2\{Y\} = 0,42\;; \quad S_{10}^2\{Y\} = 0,73\;; \quad S_{11}^2\{Y\} = 1,11\;; \quad S_{12}^2\{Y\} = 1,29\;; \quad S_{13}^2\{Y\} = 0,16\;; \\ S_{14}^2\{Y\} = 0,36\;.$$

Table 2. Results of active experience

2024

	Planı	Planning matrix with coded and natural values of						Tensile strength of thread, N				
U				factors		refishe strength of thread, N						
O	X 1	χ_2	X 3	X1, %	X2, kPa	<i>X</i> ₃, ⁰C	Υ_1	Υ_2	Y 3	Yu		
1	+	+	+	15,22	6,5	100	276,5	277,1	275,9	276,5		
2	-	+	+	9,22	6,5	100	275,7	276,6	276,2	276,17		
3	+	-	+	15,22	5,5	100	277,3	276,8	277,1	277,07		
4	-	-	+	9,22	5,5	100	258,9	259,2	259,6	259,23		
5	+	+	-	15,22	6,5	80	260,6	261,2	262,7	261,5		
6	-	+	-	9,22	6,5	80	257,2	258,4	259,1	258,23		
7	+	-	-	15,22	5,5	80	263,3	264,2	265,7	264,4		

8	-	-	-	9,22	5,5	80	255,7	255,2	256,3	255,73
9	+	0	0	15,22	6	90	262,1	260,8	261,5	261,47
10	-	0	0	9,22	6	90	261,7	262,4	260,7	261,6
11	0	+	0	12,22	6,5	90	265,2	264,3	266,4	265,3
12	0	-	0	12,22	5,5	90	274,3	275,9	273,7	274,63
13	0	0	+	12,22	6	100	278,6	277,8	278,3	278,23
14	0	0	-	12,22	6	80	275,6	276,8	276,1	276,17
Σ										267,59

2. We remove sharply different values.

We will consider this operation when analyzing the first experiment of the matrix at U=1, Umax=277.1, Umin=275.9. The calculation is carried out using the Smirnov-Grabs criterion according to the formulas,

$$V_{R\max} = \frac{Y_{i\max} - \overline{Y}}{S\{Y\}} \sqrt{\frac{m}{m-1}},\tag{2}$$

$$V_{R\min} = \frac{\overline{Y} - Y_{i\min}}{S\{Y\}} \sqrt{\frac{m}{m-1}},\tag{3}$$

Here
$$S{Y} = \sqrt{S^2{Y}} = \sqrt{0.36} = 0.6$$
.

$$V_{R \text{max}} = \frac{277, 1 - 276, 5}{0.6} \sqrt{\frac{3}{3 - 1}} = 1,22,$$
 $V_{R \text{min}} = \frac{276, 5 - 275, 9}{0.6} \sqrt{\frac{3}{3 - 1}} = 1,22.$

We find the tabular value of the Smirnov-Grabs criterion using Appendix 1 $V_{J[PD=0.95;m=3]}=1,412$. So $V_{R\max} < V_J$ and $V_{R\max} < V_J$ since, the considered values U_{max}=276.5, U_{min}=275.9 are not significantly different and remain for further statistical processing.

3. Testing the hypothesis of homogeneity of variance in matrix experiments. If the number of repetitions in the experiment is the same for all experiments in the matrix, then the Cochrane criterion is used to check the homogeneity of variances, the calculated value of which is determined by the following formula.

$$G_{R} = \frac{S_{u \max}^{2}}{\sum_{u=1}^{N} S_{u}^{2} \{Y\}},$$
(4)

Here $S_{u\max}^2$ - he maximum variance of the output factor; U- number of experiments; $\sum_{u=1}^{N} S_u^2 \{Y\}$ - the sum of all variances. $G_R = \frac{1,47}{8,7} = 0,169$.

The calculated value of the Cochrane criterion is compared with its value in the table $G_{J\left[P_D;N;f\left\{S_u^2\right\}=m-1=2\right]}$. (Appendix 3). If $G_R < G_J$ if, $S_u^2\{Y\}$ dispersions of are homogeneous, and the performed experiment has the characteristic of reproducibility.

 $G_{J\left[P_D:N:f\left\{S_u^2\right\}=m-1=2\right]}=0,353$. since the hypothesis of uniformity of dispersion in matrix experiments is not rejected, all experiments are equally accurate and repeatable.

4. The mean square variance of the output factor.

The average variance describes the average spread of the output factor values relative to the average values of the factors at each level, that is, the experimental error in the experiment. $S_{(1)}^2\{Y\} = \frac{1}{N} \sum_{i=1}^{N} S_u^2\{Y\}$. (5)

The number of degrees of freedom of reproduction variance is determined by the following formula:

$$f\left\{S^{2}\left\{Y\right\}\right\} = N \cdot (m-1) = 14 \cdot (3-1) = 28.$$

$$S^{2}\left\{Y\right\} = \frac{1}{14} \cdot 8, 7 = 0, 62.$$
(6)

5. Regression coefficients are determined using the following formulas:

$$b_0 = -\frac{1}{16} \cdot \sum_{u=1}^{8} Y_u + \frac{1}{4} \cdot \sum_{u=9}^{14} Y_u .$$
 (7)
or $b_0 = 0,40625 \sum_{u=1}^{N} \overline{Y_u} - 0,15625 \sum_{i=1}^{m} \sum_{u=1}^{N} x_{iu}^2 \cdot \overline{Y}_u .$ (8)

$$b_{i} = 0, 1 \sum_{u=1}^{N} x_{iu} \cdot \overline{Y}_{u} , \qquad (9)$$

$$b_{ij} = 0.1250 \sum_{u=1}^{N} x_{iu} \cdot x_{ju} \cdot \overline{Y}_{u} , \qquad (10)$$

$$b_{ii} = \frac{1}{16} \cdot \sum_{u=1}^{8} Y_u - \frac{1}{4} \cdot \sum_{u=9}^{14} Y_u + \frac{1}{2} \cdot \sum_{u=9}^{14} X_{iu} \cdot \overline{Y}_u , \qquad (11)$$

here b_0 - the Free term of the equation; b_i - linear coefficients; b_{ii} - coefficients of two-way interaction of factors; b_{ij} -coefficients of the second degree of the variabl

$$\begin{split} b_0 &= -\frac{1}{16} \cdot (276, 5 + 276, 17 + 277, 07 + 259, 23 + 261, 5 + 258, 23 + 264, 4 + 255, 73) + \\ &+ \frac{1}{4} (261, 47 + 261, 6 + 265, 3 + 274, 63 + 278, 23 + 276, 17) = 271, 3 \,. \\ b_1 &= 2, 99 \, ; \ b_2 = 0, 66 \, ; \ b_3 = 5, 11 \, ; \ b_{12} = -2, 86 \, ; \ b_{13} = 0, 78 \, ; \\ b_{23} &= 2, 09 \, ; \ b_{11} = -9, 76 \, ; \ b_{22} = -1, 33 \, ; \ b_{33} = 5, 90 \, . \end{split}$$

6. The experiment using the given matrix makes it possible to obtain a second-order mathematical model describing the influence of the factors x1, x2, x3 on the selected optimization parameter in the following form: (12)

Based on this formula, we will make a mathematical model.

$$Y = 271, 3 + 2,99x_1 + 0,66x_2 + 5,11x_3 - 9,76x_1^2 - 1,31x_2^2 + 5,9x_3^2 + 2,86x_{12} + 0,77x_{13} + 2,09x_{23}.$$

However, this mathematical model is not final, and after testing the significance of the regression coefficients, it was determined.

7. The variances of the regression coefficients are determined using the following formulas:

$$S^{2}\{b_{0}\} = 0,40625 \cdot S^{2}\{\overline{Y}\}, \tag{13}$$

$$S^{2}\left\{b_{i}\right\} = 0, 1 \cdot S^{2}\left\{\overline{Y}\right\},\tag{14}$$

$$S^{2}\{b_{ij}\} = 0,125 \cdot S^{2}\{\overline{Y}\}, \tag{15}$$

$$S^{2}\{b_{ii}\} = 0,40625 \cdot S^{2}\{\overline{Y}\}, \tag{16}$$

Here S2{Y} is the repeatability dispersion, which is determined by the following formula:

$$S^{2}\left\{\overline{Y}\right\} = \frac{1}{m}S^{2}\left\{Y\right\} = \frac{1}{3}\cdot 0,62 = 0,2066,\tag{17}$$

 $S^2\{b_0\} = 0,40625 \cdot 0,2066 = 0,0839$; $S\{b_0\} = 0,29$.

$$S^{2}{b_{i}} = 0.1 \cdot 0.2066 = 0.02066$$
; $S{b_{i}} = 0.14$.

$$S^{2}\{b_{i}\}=0,1\cdot 0,2066=0,02066;$$
 $S\{b_{i}\}=0,14.$ $S^{2}\{b_{ij}\}=0,125\cdot 0,2066=0,0258;$ $S\{b_{ij}\}=0,16.$

$$S^{2}{b_{ii}} = 0,40625 \cdot 0,2066 = 0,0839$$
; $S{b_{ii}} = 0,29$.

8. We examine the significance of the regression coefficients.

Significance is the condition in which the statistical data found in two or more sums are significantly different from each other or from the sums in other selected values than would be expected due to random variation.

To evaluate the significance of the regression coefficients, the Student's test is used (refers to the t-distribution; describes the deviation of the average value of the sum from the normal value of the total sum), its calculated value is determined by the following formula:

$$t_{R}\left\{b_{i}\right\} = \frac{|b_{i}|}{S\left\{b_{i}\right\}},\tag{18}$$

Here $S\{b_i\}$ is the standard deviation of the regression coefficient b_i .

The calculated value of Student's criterion is compared with the confidence probability pp=0.95 and the number of degrees of freedom condition t_J (Appendix 2). $f\{S^2\{Y\}\} = N(m-1) = 14 \cdot (3-1) = 28$

so
$$t_{J[P_D=0.95; f=28]} = 2,048$$
.

If $t_R > t_I$ then the obtained coefficients are significant and therefore the relationship between Y and X is significant.

 $t_R\{b_0\} = \frac{271.3}{0.0842} = 3223.9$. b_0 the hypothesis about the significance of the regression coefficient is not rejected.

 $t_R\{b_1\}=144,67$. b_1 the hypothesis about the significance of the regression coefficient is not rejected.

 $t_R\{b_2\} = 32,023$. b_2 the hypothesis about the significance of the regression coefficient is not rejected

 $t_R \{b_3\} = 247,01$. b_3 the hypothesis about the significance of the regression coefficient is not rejected.

 $t_{R}\left\{b_{12}\right\}=110,55$. b_{12} the hypothesis about the significance of the regression coefficient is not rejected.

 $t_R\{b_{13}\}=30,092$. b_{13} the hypothesis about the significance of the regression coefficient is not rejected.

 $t_{\scriptscriptstyle R}\left\{b_{\scriptscriptstyle 23}\right\}\!=\!80,943\,.$ $b_{\scriptscriptstyle 23}$ regressiya koeffitsientining ahamiyati haqidagi gipoteza rad etilmaydi.

 $t_{R}\left\{b_{11}\right\}=116,014$. b_{11} the hypothesis about the significance of the regression coefficient is not rejected.

 t_R { b_{22} } = 15,82. b_{22} the hypothesis about the significance of the regression coefficient is not rejected.

 $t_R\{b_{33}\}=70,136$. b_{33} the hypothesis about the significance of the regression coefficient is not rejected.

For the considered equation, we get the necessary mathematical model, which includes only significant coefficients. No coefficients were rejected based on Student's criterion

$$Y = 271, 3 + 2,99x_1 + 0,66x_2 + 5,11x_3 - 9,76x_1^2 - 1,31x_2^2 + 5,9x_3^2 + 2,86x_{12} + 0,77x_{13} + 2,09x_{23}.$$

The resulting equation shows the relationship between the breaking strength of the warped yarn in the warping machine, the warp concentration, the pressure in the compression shafts, and the temperature of the middle drum of the warping machine.

9. The resulting equation shows the relationship between the breaking strength of the warped yarn in the warping machine, the warp concentration, the pressure in the compression shafts, and the temperature of the middle drum of the warping machine.

$$F_{R} = \frac{S_{ad}^{2}\{Y\}}{S^{2}\{Y\}} = \frac{S_{nad}^{2}\{Y\}}{S^{2}\{\overline{Y}\}}, \text{ agar } S_{nad}^{2}\{Y\} > S^{2}\{\overline{Y}\}$$
 (19)

$$F_{R} = \frac{S^{2}\{Y\}}{S_{ad}^{2}\{Y\}} = \frac{S^{2}\{\overline{Y}\}}{S_{nad}^{2}\{Y\}}, \text{ agar } S_{nad}^{2}\{Y\} < S^{2}\{\overline{Y}\}$$
 (20)

Here $S_{nad}^2\{Y\}$ - (inadequate) variance resulting from non-compliance is determined by the following formula:

$$S_{nad}^{2}\{Y\} = \frac{\sum_{u=1}^{N} (Y_{u} - Y_{RU})^{2}}{N - N_{k}},$$
(21)

Here N_k is the number of significant coefficients.

Results. Using the obtained mathematical model, we calculate the YRU values and summarize them in Table 3.

T 11 0	O 1		4.
Table 3.	Calcu	lation	results

U	Υu	$c^2(v)$	17-	V_{Rmin}	V.,,,	Yu-Yru	(V., V.,)2
		$S_u^2\{Y\}$	V _{Rmax}		Yru		(Yu-Yru) ²
1	276,50	0,36	1,22	1,22	274,89	1,61	2,58
2	276,17	0,20	1,18	1,27	273,07	3,10	9,61
3	277,07	0,06	1,14	1,30	275,1	1,97	3,87
4	259,23	0,12	1,28	1,16	261,82	-2,59	6,71
5	261,50	1,17	1,36	1,02	258,91	2,59	6,71
6	258,23	0,92	1,10	1,32	260,2	-1,97	3,87
7	264,40	1,47	1,31	1,11	267,5	-3,10	9,61
8	255,73	0,30	1,26	1,19	257,34	-1,61	2,58
9	261,47	0,42	1,19	1,25	264,53	-3,06	9,38
10	261,60	0,73	1,15	1,29	258,54	3,06	9,38
11	265,30	1,11	1,28	1,16	270,63	-5,33	28,41
12	274,63	1,29	1,36	1,01	269,3	5,33	28,41
13	278,23	0,16	1,11	1,31	282,32	-4,08	16,67
14	276,17	0,36	1,29	1,15	272,08	4,08	16,67
\sum	267,59	8,7					154,47

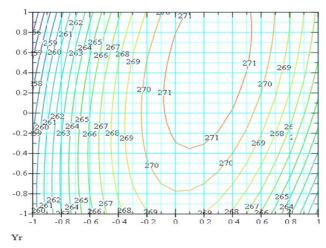
$$S_{nad}^2\{Y\} = \frac{154,47}{(14-6)} = 19,308$$

So, $S_{nad}^2\{Y\} > S^2\{\overline{Y}\}$ from this 19,308>8,7 then the estimated value of Fisher's criterion is determined by the following formula.

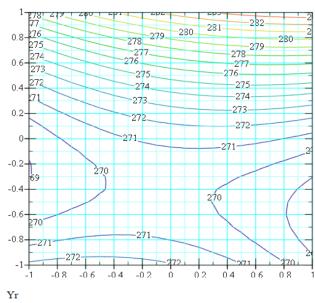
$$F_R = \frac{S_{ad}^2 \{Y\}}{S^2 \{Y\}} = \frac{S_{nad}^2 \{Y\}}{S^2 \{\overline{Y}\}} = \frac{19,308}{8,7} = 2,21$$

Estimated value of Fisher's criterion F_R confidence probability pp=0.95, $f\{S_{nad}^2\} = N - N_k$ and $f\{S^2\}$ the table value with the number of degrees of freedom is compared to F_J (Appendix 4). If $F_R < F_J$ if there is, then the hypothesis of the model's correspondence to the experimental data is not rejected.

$$F_{J_{P_D=0,95; f\{S_y^2\}=14(3-1)=28; f\{S_{nad}^2\}=14-6=8\}} = 2,29$$

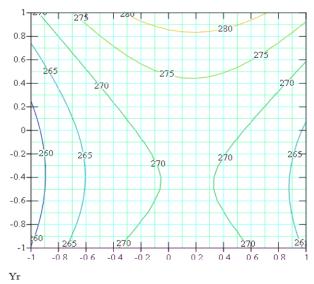

 $F_R < F_J$ because the hypothesis about the adequacy of the model is not rejected.

Conclusions. General conclusions The resulting mathematical model of the technological process of weaving yarns with linear density T=30 on the BENINGER weaving machine is as follows:


$$Y = 271, 3 + 2,99x_1 + 0,66x_2 + 5,11x_3 - 9,76x_1^2 - 1,31x_2^2 + 5,9x_3^2 + 2,86x_{12} + 0,77x_{13} + 2,09x_{23}$$

We plot the values of the input factors based on the obtained formula (Y_r). We analyze the graph of the dependence of the incoming factors, X_1 - concentration of ash and X_2 - on the pressure in the compression shafts (Fig. 1). As can be seen from the graph, as the concentration of ash increases, the pressure in the compression shafts also increases, which leads to an increase in the breaking force.

Figure 1. Dependence of sizing concentration (X_1) on compression shafts pressure (X_2) in machine sizing is isolines


Figure 2. Dependence of the pressure on the compression shafts (X_2) on the machine sizing and the temperature of the drum (X_3) in the middle of the machine sizing are isolines

In the graph of the dependence of the pressure on the compression shafts X_2 - and X_3 - on the temperature of the drum in the sizing machine (Fig. 4.2), these values change (increase or decrease) relative to each other. Only as a result of a decrease in pressure on the compression shafts, the amount of sizing increases. As a result, when the temperature rises, warp yarns burns occur.

Vol. 9 Issue 4 www.niet.uz

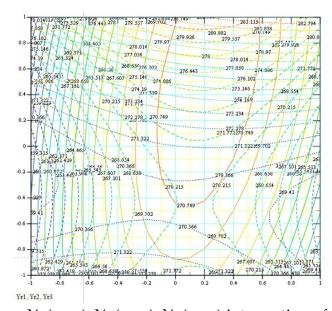

2024

Figure 4.3. Dependence of sizing concentration (X_1) in the size luquor machine on the temperature of the drum (X_3) in the middle of the sizing machine is isolines

In the graph of the dependence of the concentration of input factors X_1 -size luquor on the temperature of the drum between X_3 (Fig. 4.3), the temperature of the drum in the middle of the sizing machine decreases with the increase of size luquor concentration.

4-Figure. $Y_{r1}(x_1,x_2)$, $Y_{r1}(x_2,x_3)$, $Y_{r1}(x_1,x_3)$ intersection of graphs

Based on the intersection of the graphs of the input factors (Fig. 4.4), we can determine the values for the optimal operation of the sizing machine. In this case, option 13 means:

- 1. Sizing concentration, X₁=12,22 %;
- 2. Compression shaft pressure, X₂=6 kPa;

3. The temperature of the middle drum, $X_3=100$ °C Size luquored on the sizing machine warp yarns will be the most optimal option.

References

- 1. Mexmonov NE, Aliyev SA. Koʻp devorli uglerod nanotubalarini alginat boncuklariga singdirish ularning suvli metilen koʻkiga adsorbsiya qobiliyatini keskin oshishi tadqiqi. *Ilgʻor materiallar va texnologiyalar*. 2020; 12(2): 3–24.\
- 2. B. Boymuratov, R. Akbarov, R. Yangiboev, Sh. Mengnarov, J. Khasanov; Development and research of flexible fabric electric heaters. AIP Conf. Proc. 24 January 2022; 2430 (1): 030006. https://doi.org/10.1063/5.0077855
- 3. Баймуратов Б. Х. и др. Исследование натяжения нитей различного волокнистого состава в процессе перематывания //Текстильный журнал Узбекистана. 2021. №. 1. С. 54-61.
- 4. Янгибоев Р.М., Аллакулов Б.Р., Гулмирзаева С.М. Исследование разрывной нагрузки фильтрующей ткани // Universum: технические науки. 2024. №3 (120). URL: https://cyberleninka.ru/article/n/issledovanie-razryvnoy-nagruzki-filtruyuschey-tkani.

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT INDUSTRY

Korabayev Sh.	3
From street traffic to space: innovations in autonomous vehicles	<u> </u>
Egamov N.	
Investigation of vertical forced vibration in the longitudinal - vertical plane of a	10
binder that softens the crush between cotton rows	
Khamraeva S., Kadirova D., Davlatov B.	
Determination of alternative technological factors for the production of functional	15
fabric with a complex structure	
Khamraeva S., Kadirova D., Daminov A.	21
Designing fabrics for a given stretchability	
Kuliyev T., Rozmetov R., Tuychiev T., Sharipov Kh.	
The effect of the angle of heat agent supply to the drying - cleaning equipment on	28
cotton quality and cleaning efficiency of the equipment	
Abdujabbarov M., Alieva D., Karimov R.	
Determination of the influence of the length of the tested yarn samples on their	35
mechanical characteristics	
Jurayeva M., Nabidjonova N.	
Research on physical and mechanical properties of fabric selected for special	41
clothing of preschool children	
Yangiboev R., Allakulov B., Gulmirzayeva S.	
Studying the alternative technological factors of the loom in the production of	45
textiles based on basalt yarn	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	55
Analysis of the maintechnological parameters of the condenser	
Mavlyanov A., Mirzaumidov A.	60
The scientific basis of the lightened shaft	
Elmanov A., Mirzaumidov A.	69
Modeling of laser processing of thin-walled steel gears	
Nurillaeva Kh., Mirzaumidov A.	77
Cotton cleaner with multifaceted grates	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	83
The equation of motion of cotton fiber in the condenser	
Khuramova Kh., Xoshimxojaev M.	89
Progressive method of cotton regeneration	

Abdukarimova M., Lutfullaev R., Usmanova N., Mahsudov Sh.	94
Evaluation of aestheticity of women's dress models based on deep learning models	94
GROWING, STORAGE, PROCESSING AND AGRICULTURAL	
PRODUCTS AND FOOD TECHNOLOGIES	
Zufarov O., Isroilova Sh., Yulchiev A., Serkayev K.	101
Theoretical aspects of obtaining oxidation-stable vegetable oils	101
Toshboyeva S., Dadamirzaev M.	110
Filling sauces for canned fish and their layer kinetics	110
Atamirzaeva S., Saribaeva D., Kayumova A.	115
Prospects for the use of rose hips in food technology	115
Turgunpolatova Sh.	121
Study of the quality of fruit pastela products	141
Sultanov S.	
Analysis of experiments on the process of deodorization of vegetable oil using	126
floating nozzles	
Adashev B.	132
Physical-chemical analysis of oil taken from seeds of safflower	152
Ismailov M.	137
Influence of surface layer thickness on hydraulic resistance of the device	
Khurmamatov A., Boyturayev S., Shomansurov F.	142
Detailed analysis of the physicochemical characteristics of distillate fractions	
Madaminova Z., Khamdamov A., Xudayberdiyev A.	
Preparing peach seed for oil extraction and improving oil extraction through	154
pressing	
Aripova K.	162
Methods of concentration of fruit juices and their analysis	
Djuraev Kh., Urinov Sh.	
Theoretical and experimental study of the crack formation device in the shell of	168
apricot kernels	
CHEMICAL TECHNOLOGIES	
Urinboeva M., Abdikamalova A., Ergashev O., Eshmetov I., Ismadiyarov A.	
Study of the composition and main characteristics of petroleum oils and their emulsions	175
Tursunqulov J., Kutlimurotova N.	
Application of 1-(2-hydroxy-1-naphtoazo)-2-naphthol-4-sulfo acid in amperometric determination of scandium ion	182
Kucharov A.	191

Development of coal enrichment and gas extraction technology for the use of construction materials industrial enterprises Abdulkhaev T., Mukhammadjonov M., Mirzarakhimova F. Isotherm of benzene adsorption and differential heat of adsorption on AgZSM-5 198 zeolite Vladimir L., Eshbaeva U., M.Ergashev Innovative environmental packaging for separating storage of two components, 204 allowing to extend the lifetime without preservatives Kodirov O., Ergashev O. 212 Energetics of adsorption of water molecules to aerosol Yusupov K., Erkabaev F., Ergashev D., Rakhimov U., Numonov M. 219 Synthesis of melamine-formaldehyde resins modified with n-butanol Ergashev O., Abdikamalova A., Bakhronov Kh., Askarova D., Xudoyberdiyev N., Mekhmonkhonov M., Xolikov K. 228 Thermodynamics of Congo red dye adsorption processes on mineral and carbon adsorbents Ergashev O., Maxmudov I. Water vapor adsorption isotherm in zeolites regenerated by microwave 235 thermoxidation method Jumaeva D., Zaripbaev K., Maxmudov F. 242 The elements and oxide content of the chemical composition of the feldspar **MECHANICS AND ENGINEERING** Khudoyberdiev U., Izzatillaev J. 249 Analysis of research on small wind energy devices Atajonova S. Mathematical model of system analysis of technological processes in the form of 258 key principles for effective decision-making Kuchkarbayev R. Mathematical modeling of heat transfer through single-layer and multi-layer 264 cylindrical walls in buildings and structures Atambaev D. Difference in the length of individual yarn composition of twisted mixed yarn and 269 comparative analysis of single-thread elongation deformations Abdullayev S. Modeling the functionalities of an automated system for managing movement in 276 the air Turakulov A. Describing computational domains in applications for solving three-dimensional 285 problems of technological processes Mamaxonov A.

Mathematical model of machine aggregate of tillage equipment process	293
Khudayberdiyev A.	304
Technical and economic aspects of processing pyrolysis distillate into motor fuel	304
Abdurahmonov J.	311
Research results on the selection of the mesh surface of a lint-cleaning device	311
Vohidov M.	
Development of a program for determining eccentricity by analyzing the magnetic field in the air gap of an asynchronous motor	319
Utaev S., Turaev A.	
Analysis of methods and prospects for application of optical methods for control of working surfaces of cylinder liners of internal combustion engines	327
Boltabayev B.	
Determination of seed damage in the pneumatic transport system by conducting experiments	335
Azizov Sh., Usmanov O.	. 220
Simulation of equation of motion of the new construction gin machine	339
Sharibaev N., Homidov K.	
Theoretical analysis of the coefficient of friction induced by the pressure force of a vertical rope acting from above and below	347
Aliyev B., Shamshitdinov M.	356
Improvement of the linter machine and development of its working scheme	330
Mukhametshina E.	362
Analysis of cotton flow behavior in different pneumatic pipes	302
Yangiboev R., Allakulov B.	369
Obtaining and analyzing correlational mathematical models of the sizing process	309
Mirzakarimov M.	379
Efficient separation of fibers from saw teeth in the newly designed gin machine	319
Azambayev M.	387
Measures to improve the quality of fluff	
Abdullayev R.	392
Scientific innovative development of cotton gining	372
Kholmirzaev F.	397
Air flow control factors in pneumatic transport device	331
Sharibaev N., Makhmudov A.	
Separation of cotton from airflow in pneumatic transport systems of the cotton industry	404
Sharibaev N., Mirzabaev B.	

Effect of steam temperature on yarn moisture regulation in textile industry	410
Sultanov S., Salomova M., Mamatkulov O.	. /15
Increasing the useful surface of the mesh surface	415
Muhammedova M.	401
Kinematics of the foot in a healthy person's foot and ankle injury	421
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCATIO	N
Abdullayev H.	- 420
Algorithm for creating structured diagrams of automatic control systems	429
Kodirov D., Ikromjonova N.	437
On delayed technological objects and their characteristics	437
Uzokov F.	_
Graphing circles, parabolas, and hyperbolas using second-order linear equations	444
in excel	
ECONOMICAL SCIENCES	
Zulfikarova D.	440
Issues of developing women's entrepreneurship	449
Ergashev U., Djurabaev O.	
Methods for assessing the effectiveness of waste recycling business activities in the	455
environmental sector	