

Scientific and Technical Journal Namangan Institute of Engineering and Technology

UDC 621.565.93/95

INFLUENCE OF SURFACE LAYER THICKNESS ON HYDRAULIC RESISTANCE OF THE DEVICE

ISMAILOV MIRZAAKBAR

Assistant of Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0894) 175-5705, E-mail.: imirzaakbar@gmail.com

Abstract: The increase in the thickness of the scale on the inner surfaces of technological pipes reduces the cross-sectional area of the pipe, thereby decreasing its conductivity. As a result, the coefficient of friction in the pipe increases, which in turn leads to an increase in its hydraulic resistance. This causes a sharp increase in the amount of energy consumed, as the required pump power for fluid transportation rises accordingly.

The main objective of determining the hydraulic resistance of flowing fluids in heat exchange systems through experimental or calculation methods is to identify the power required to drive the flow. Hydraulic resistance mainly depends on factors such as flow velocity, its physical properties, the pipe's structural parameters, and the accumulated mass of the scale within the pipe.

The comparative analysis of the pressure loss ΔP values of the heated water moving through the inner pipe of the shelland-tube heat exchanger was carried out through calculations.

Keywords: heat exchange, hydraulic resistance, pressure, local resistance, scale mass.

Introduction. The primary objective of determining the hydraulic resistance of flowing fluids in heat exchange systems through experimental or computational methods is to identify the power required to drive the flow. Hydraulic resistance mainly depends on factors such as flow velocity and its physical properties, the pipe's structural parameters, and the accumulated scale mass within the pipe [1-4]. The comparative analysis of pressure loss ΔP values for heated water moving through the inner pipe of the shell-and-tube heat exchanger was carried out through calculations [4-8].

The total loss of pressure ΔP_{gen} in the flow within the inner pipe of the heat exchanger is formed by the pressure loss due to friction ($\Delta P_{\rm fr}$) and the pressure loss due to local resistances in the pipe ($\Delta P_{local res}$) [1, 6-11]:

$$\Delta P_{gen} = \Delta P_{fr} + \Delta P_{local res} \tag{1}$$

The pressure loss due to friction $\Delta P_{\rm fr}$ is dependent on the viscosity of the hydrocarbon feedstock moving through the pipe [1, 10-12]:

$$\Delta P_{fr} = \lambda (\upsilon^2 \rho/2) (L_{gen}/d_i), \tag{2}$$

where: λ - is the friction coefficient, ν -is the flow velocity, m/s, ρ -is the density of the material, kg/m³, Lgen - is the length of the heat exchange pipe, di-is the internal diameter of the pipe, m.

The pressure loss due to local resistances $\Delta P_{\text{local res}}$ is calculated using the following formula [1, 13-30]:

$$\Delta P_{\text{local res}} = \sum_{i=1}^{n} \xi_i \rho v^2 / 2.$$
 (3)

Methods. The values of the local resistance coefficients ξ_i , in heat exchange systems are provided in the literature. In shell-and-tube heat exchangers, the following local resistance coefficients are typically used: For a low-corrosion welded steel pipe with

smooth joints, the resistance coefficient is - ξ_1 =0.2; (For entry into a sharp-edged pipe, the resistance coefficient is - ξ_1 =0.5), For exit from a sharp-edged pipe, the resistance coefficient is ξ_2 =1,0; For sudden expansion of flow, the resistance coefficient is ξ_1 =0,5; For sudden contraction of flow, the resistance coefficient is ξ_1 =0,35 [1].

Results. According to the company regulations, a two-way heat exchange system is installed for the cationic filtration line of the water. The main parameters of the system are provided in table1

Table 1. Operating parameters of the heat exchanger

No	Indicators	Unit of	Size
		measurement	
1	The diameter of the outer pipe, Dext.	mm	420
2	Inner pipe length, L	mm	3000
3	Total number of pipes, <i>n</i>	grain	122
4	Number of roads, z	grain	2
5	The temperature of the water at the entrance to the device, t_1	٥C	20
6	The temperature of the water at the outlet of the device, t_2	٥C	80
7	The temperature of the steam at the entrance to the device, t_3	٥C	150
8	The temperature of the steam at the inlet from the device, t_4	٥C	121
9	Water pressure at the inlet to the device	kPa	250
10	Steam pressure at the inlet to the device	kPa	600

From the experiments conducted on the heat exchanger, it was found that during the movement of water in the internal pipe of the device, the outer mass accumulates. As a result, the cross-sectional area of the pipe decreases. This leads to a sharp decrease in the throughput of the pipe and, at the same time, an increase in the amount of energy spent on driving the flow.

Table 2 shows the change in the hydraulic resistance in the internal pipe of the heat exchanger used in the preparation of water for technological processes at "Uchkurgan-Yog" JSC, depending on the thickness of the outer layer.

According to the results of the hydraulic calculations, it was found that when the thickness of the outer layer in the internal pipes of the heat exchange device is δ =0.1 mm, the pressure loss due to friction during the movement of water increases to ΔP_{fr} = 168 kPa, the pressure in local resistances to $\Delta P_{\text{local res}}$, = 82 kPa, and the total hydraulic resistance of the device increases to ΔP_{gen} = 250 kPa. It was found that with an increase in the thickness of the outer layer from 0.1 mm to 3.0 mm, ΔP_{fr} increases by 11.7 times, $\Delta P_{local res}$ by 10.2 times, and ΔP_{gen} by 11.3 times.

Table 2. The influence of the	thickness c	of the	coating	on	the	hydraulic	resistance
indicators of the heat exchanger							

The thickness of the coating layer on the surface of the pipe is δ_r	Pressure lost due to frictional forces ΔP_{fr} , kPa	Pressure lost from local resistances ΔP_{local} res, kPa	Hydraulic resistance ΔP_{gen_r} kPa
mm	1/0	92	250
0.1	168	82	250
0,5	314	166	480
0,8	410	211	621
1,0	590	227	817
1,5	864	381	1245
2,0	1230	490	1720
2,5	1587	663	2250
3,0	1975	840	2815

Conclusion. The results obtained show that increasing the thickness of the outer layer on the surface of the heat exchange pipe, in addition to reducing its heat transfer characteristics, also leads to a sharp increase in the hydraulic resistance in the pipe. This increases energy consumption and negatively affects the operation of the device at full capacity.

References

- 1. Pavlov K.F., Romankov P.G., Noskov A.A. Primery i zadachi po kursu processov i apparatus chemical technology. Leningrad: Khimiya, 1981. -272 p.
- 2. Salimov Z.S. Oil and gas processing processes and equipment. T.: "Alokachi", 2010, 508 pages.
- 3. Mikhaev M.A. Hydraulic raschyot napornykh truboprovodov. Injinerno stroitelnyy magazine, St. Petersburg. 2012. No. 6, S. 20-28.
- 4. Semenov V.P. Razrabotka metodov intensifikatsii processov teplomena pri condensatsii para v poverkhnostnyx i kontaktnyx teplo-mennikax: Autoreferat diss. ... Dr. tech. science Yekaterinburg: Uralsky GTU, 2008. 47 p.
- 5. Ismailov O.Yu., Khurmamatov A.M. The quality of the formation process of the study is dependent on the coefficient of the heat exchanger and the tube heat exchanger. Bulatovskie chteniya: materialy IV Mejdunarodnoy nauchno-prakticheskoy conference (31 times 2020): v 7 t.: sbornik statey / Pod obshch. ed. Dr. Tech. Nauk, Prof. O.V. Savenok. Krasnodar: Izdatelsky Dom Yug. T. 5: Chemical technology and ecology and oil and gas industry. 2020. -S. 100-102.
- 6. Ismailov O.Yu., Khurmamatov A.M., Issledovaniya vliyaniya magnitnogo polya na protsess obrazovaniya nakipi v teplovykh ustroystvax/ Uzbekistan kimyo zurnal Tashkent. Issue 6 2022. 52-56 p.
- 7. Ismailov O.Yu. Device for learning the influence of the magnetic field on the process of deposit formation in heat exchanger devices/ Scientific and technical journal

Vol. 9 Issue 4 www.niet.uz 2024

of the Namangan Institute of Engineering Technology. - Namangan, 2022. Volume 7, 4th edition, p. 151-155.

- 8. Khurmamatov A.M., Ismailov O.Yu., Ismailov M.Kh., Umarov E.S. Dynamics of distribution of scale along the length of the heat exchange pipe / Fergana Polytechnic Institute, Fergana, -2023. Volume 27, Issue 1, p. 72-75.
- 9. Ismailov O.Yu., Ismailov M.Kh. The effect of magnetic field on the formation of mineral deposits in heat exchange devices / Collection of materials of the Republican scientific practical conference on the topic "Efficiency of using local minerals in the restoration of degraded soils". March 6, 2023. Defect. p. 178-181
- 10. Ismailov O.Yu., Ismailov M.Kh. Vliyaniya magnitnogo polya na protsess obrazovaniya nakipi v vodonagrevatelyakh Bulatovskie chteniya Materialy VII Mejdunarodnoy nauchno-prakticheskoy konferentsii 31 marta 2023 g. Russia Krasnodar 148 p
- 11. Ismailov O.Yu., Khurmamatov A.M., Ismailov M.Kh., Ausbaev A.U. Investigations of the impact of the magnetic field on the process of formation of scaling Nafta-Gaz 2024. thermal devices/ Iournal Nο 2. Pp. 115-124, DOI:10.18668/NG.2023.02.07.
- 12. Ismailov O.Yu ., Ismailov M.Kh. The influence of a magnetic field on the accumulation of foreign mass in heat exchange structures. Problems in chemical technology, chemical and food industries in the context of integration of science and production and ways to overcome them. Collection of materials of the Republican Scientific and Practical Conference. 2022. Namangan. -211-212 p.
- 13. Ismoilov O.Yu., Ismoilov M.Kh. The influence of a magnetic field on the process of external formation in heat exchange devices / 3rd International Scientific and Technical Conference on "Problems and Prospects of Innovative Techniques and Technologies in the Agricultural and Food Industry" Collection of conference materials of the international scientific and technical conference held at Tashkent State Technical University 20, 2023 -21 April 65-66-p.
- 14. Ismoilov O.Yu., Ismoilov M.Kh. Dependence of the heat transfer coefficient in heat exchangers on the thickness of the scale. Scientific and practical work "Fundamentals of the constant development of the magnetic field" of the Caspian University of Technology and Engineering named after Yesenov of the Republic of Kazakhstan Conference Proceedings Kazakhstan April 14, 2023 Volume 4 pp. 138-140
- 15. Ismailov O.Yu., Ismailov M.Kh. The influence of the magnetic field on the process of scale formation in water heaters. Collection of materials of the International Scientific Conference "The Fourth Industrial Revolution and Innovative Technologies" dedicated to the 100th anniversary of the birth of H. Aliyev, Azerbaijan. -May 3-4, 2023 p. 50-51
- 16. Ismailov M.Kh. The influence of external formation in heat exchange devices of food industry enterprises on the efficiency of heat exchange. Problems in chemical technology, chemistry, and the food industry and ways to overcome them in the context

of integration of science and production Collection of materials of the Republican scientific and practical conference NamMTI 2022 June 3-4, 211-212-b

- 17. Ismailov O.Yu. Installation for studying the formation of deposits on the inner surface of heat exchanger tubes// Uzbek Chemical Journal. Tashkent. –2016. No. 6. P. 49-55.
- 18. Ismailov O.Yu. Khurmamatov A.M., Buriyeva Z.R. Speed and hydrocarbon flows temperature influence on the process of scale formation/ Mejdunarodnoy nauchnoteknicheskoy konferentsii "Riski, vyzovy i problemy XXI veka v tsifrovoy transformatsii rationalnogo i bezopasnogo nedropolzovaniya" Tashkent. May 20-21, 2022. C. 351-352.
- 19. Ismailov O.Yu. Calculation of hydraulic resistance in a horizontal pipe// Uzbek chemical journal. -Tashkent, 2013. #6. S. 73-75
- 20. Ismailov O.Yu., Rakhmanov T.Z. Izuchenie usloviya obrazovaniya otlozhenyi v trubakh teploobmennyx apparatax// Nauchno-teknicheskiy zurnal, "Khimicheskaya promyshlennost". St. Petersburg, 2017. No. 2 S. 74-78.
- 21. Voqqosov Z., Khudaiberdieva L., Xodzhanazarova M. Studying the process of phenological monitoring of late varieties of plums grown in the climatic conditions of Namangan region //E3S Web of Conferences. EDP Sciences, 2024. T. 486. C. 02012.
- 22. Zukhriddin, Vokkosov, Kanoatov Khairullo Murodillaevich, and Sultonov Boxodir Elbekovich. "Obtaing Organomineral Fertilizers on Base of Local Raw Materials and Nitrogen-fixing Microorganisms." Chemical Science International Journal 31.4 (2022): 44-53.
- 24. Adashev, Bexzod va boshqalar. "UDK 664.34: 637.144 Rafinalangan O'simlik moylarini aralashtirish ko'rsatkichlari." Namangan muhandislik-texnologiya instituti ilmiy-texnikaviy jurnali 8.2 (2023): 87-91.
- 25. Адашев, Бегзод Шералиевич, Дилноза Саидакбаровна Салиханова, and Мухтасар Абдумуталлиб Кизи Исмоилова. "Улучшение биологических свойств растительных масел купажированием." Universum: химия и биология 4 (106) (2023): 44-48.
- 26. Khamdamov A. M., Sultonov S. H., Bozorov S. A. The main results of the study of the processes of deodorization of vegetable oils using wooden nozzles //Journal of Pharmaceutical Negative Results. 2022. C. 3844-3851.
- 27. Султанов С. Х., Хамдамов А. М., Артиков А. А. Эффективное использование плавающих деревянных насадок при интенсификации процессов массообмена //Universum: технические науки. 2022. №. 4-7 (97). С. 46-48.
- 28. Sodikova S. USING SWEET SORGHUM SYRUP AS A SWEETENER //Universum: технические науки. 2023. №. 12-8 (117). С. 11-13.
- 29. Abdurazzakovna S. S., Odilovich D. K. Research of physicochemical parameters of sugar sorghum juices //Scientific and technical journal of namangan institute of engineering and technology.
- 30. Eshonturaev A., Sodiqova S. Analysis of raw material sources for a plant-based milk alternative from almonds //E3S Web of Conferences. EDP Sciences, 2024. T. 486. C. 02013.

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT INDUSTRY

Korabayev Sh.	3
From street traffic to space: innovations in autonomous vehicles	<u> </u>
Egamov N.	
Investigation of vertical forced vibration in the longitudinal - vertical plane of a	10
binder that softens the crush between cotton rows	
Khamraeva S., Kadirova D., Davlatov B.	
Determination of alternative technological factors for the production of functional	15
fabric with a complex structure	
Khamraeva S., Kadirova D., Daminov A.	21
Designing fabrics for a given stretchability	
Kuliyev T., Rozmetov R., Tuychiev T., Sharipov Kh.	
The effect of the angle of heat agent supply to the drying - cleaning equipment on	28
cotton quality and cleaning efficiency of the equipment	
Abdujabbarov M., Alieva D., Karimov R.	
Determination of the influence of the length of the tested yarn samples on their	35
mechanical characteristics	
Jurayeva M., Nabidjonova N.	
Research on physical and mechanical properties of fabric selected for special	41
clothing of preschool children	
Yangiboev R., Allakulov B., Gulmirzayeva S.	
Studying the alternative technological factors of the loom in the production of	45
textiles based on basalt yarn	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	55
Analysis of the maintechnological parameters of the condenser	
Mavlyanov A., Mirzaumidov A.	60
The scientific basis of the lightened shaft	
Elmanov A., Mirzaumidov A.	69
Modeling of laser processing of thin-walled steel gears	
Nurillaeva Kh., Mirzaumidov A.	77
Cotton cleaner with multifaceted grates	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	83
The equation of motion of cotton fiber in the condenser	
Khuramova Kh., Xoshimxojaev M.	89
Progressive method of cotton regeneration	

Abdukarimova M., Lutfullaev R., Usmanova N., Mahsudov Sh.				
Evaluation of aestheticity of women's dress models based on deep learning models				
GROWING, STORAGE, PROCESSING AND AGRICULTURAL				
PRODUCTS AND FOOD TECHNOLOGIES				
Zufarov O., Isroilova Sh., Yulchiev A., Serkayev K.	101			
Theoretical aspects of obtaining oxidation-stable vegetable oils	101			
Toshboyeva S., Dadamirzaev M.	110			
Filling sauces for canned fish and their layer kinetics	110			
Atamirzaeva S., Saribaeva D., Kayumova A.	115			
Prospects for the use of rose hips in food technology	115			
Turgunpolatova Sh.	121			
Study of the quality of fruit pastela products	141			
Sultanov S.				
Analysis of experiments on the process of deodorization of vegetable oil using	126			
floating nozzles				
Adashev B.	132			
Physical-chemical analysis of oil taken from seeds of safflower	152			
Ismailov M.	137			
Influence of surface layer thickness on hydraulic resistance of the device				
Khurmamatov A., Boyturayev S., Shomansurov F.	142			
Detailed analysis of the physicochemical characteristics of distillate fractions				
Madaminova Z., Khamdamov A., Xudayberdiyev A.				
Preparing peach seed for oil extraction and improving oil extraction through	154			
pressing				
Aripova K.	162			
Methods of concentration of fruit juices and their analysis				
Djuraev Kh., Urinov Sh.				
Theoretical and experimental study of the crack formation device in the shell of	168			
apricot kernels				
CHEMICAL TECHNOLOGIES				
Urinboeva M., Abdikamalova A., Ergashev O., Eshmetov I., Ismadiyarov A.				
Study of the composition and main characteristics of petroleum oils and their emulsions	175			
Tursunqulov J., Kutlimurotova N.				
Application of 1-(2-hydroxy-1-naphtoazo)-2-naphthol-4-sulfo acid in amperometric determination of scandium ion	182			
Kucharov A.	191			

Development of coal enrichment and gas extraction technology for the use of construction materials industrial enterprises Abdulkhaev T., Mukhammadjonov M., Mirzarakhimova F. Isotherm of benzene adsorption and differential heat of adsorption on AgZSM-5 198 zeolite Vladimir L., Eshbaeva U., M.Ergashev Innovative environmental packaging for separating storage of two components, 204 allowing to extend the lifetime without preservatives Kodirov O., Ergashev O. 212 Energetics of adsorption of water molecules to aerosol Yusupov K., Erkabaev F., Ergashev D., Rakhimov U., Numonov M. 219 Synthesis of melamine-formaldehyde resins modified with n-butanol Ergashev O., Abdikamalova A., Bakhronov Kh., Askarova D., Xudoyberdiyev N., Mekhmonkhonov M., Xolikov K. 228 Thermodynamics of Congo red dye adsorption processes on mineral and carbon adsorbents Ergashev O., Maxmudov I. Water vapor adsorption isotherm in zeolites regenerated by microwave 235 thermoxidation method Jumaeva D., Zaripbaev K., Maxmudov F. 242 The elements and oxide content of the chemical composition of the feldspar **MECHANICS AND ENGINEERING** Khudoyberdiev U., Izzatillaev J. 249 Analysis of research on small wind energy devices Atajonova S. Mathematical model of system analysis of technological processes in the form of 258 key principles for effective decision-making Kuchkarbayev R. Mathematical modeling of heat transfer through single-layer and multi-layer 264 cylindrical walls in buildings and structures Atambaev D. Difference in the length of individual yarn composition of twisted mixed yarn and 269 comparative analysis of single-thread elongation deformations Abdullayev S. Modeling the functionalities of an automated system for managing movement in 276 the air Turakulov A. Describing computational domains in applications for solving three-dimensional 285 problems of technological processes Mamaxonov A.

Mathematical model of machine aggregate of tillage equipment process	293
Khudayberdiyev A.	304
Technical and economic aspects of processing pyrolysis distillate into motor fuel	304
Abdurahmonov J.	311
Research results on the selection of the mesh surface of a lint-cleaning device	311
Vohidov M.	
Development of a program for determining eccentricity by analyzing the magnetic field in the air gap of an asynchronous motor	319
Utaev S., Turaev A.	
Analysis of methods and prospects for application of optical methods for control of working surfaces of cylinder liners of internal combustion engines	327
Boltabayev B.	
Determination of seed damage in the pneumatic transport system by conducting experiments	335
Azizov Sh., Usmanov O.	- 220
Simulation of equation of motion of the new construction gin machine	339
Sharibaev N., Homidov K.	
Theoretical analysis of the coefficient of friction induced by the pressure force of a vertical rope acting from above and below	347
Aliyev B., Shamshitdinov M.	356
Improvement of the linter machine and development of its working scheme	330
Mukhametshina E.	362
Analysis of cotton flow behavior in different pneumatic pipes	302
Yangiboev R., Allakulov B.	369
Obtaining and analyzing correlational mathematical models of the sizing process	
Mirzakarimov M.	379
Efficient separation of fibers from saw teeth in the newly designed gin machine	
Azambayev M.	387
Measures to improve the quality of fluff	
Abdullayev R.	392
Scientific innovative development of cotton gining	
Kholmirzaev F.	397
Air flow control factors in pneumatic transport device	
Sharibaev N., Makhmudov A.	-
Separation of cotton from airflow in pneumatic transport systems of the cotton industry	404
Sharibaev N., Mirzabaev B.	

Effect of steam temperature on yarn moisture regulation in textile industry	410			
Sultanov S., Salomova M., Mamatkulov O.				
Increasing the useful surface of the mesh surface				
Muhammedova M.				
Kinematics of the foot in a healthy person's foot and ankle injury	421			
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCATION				
Abdullayev H.	429			
Algorithm for creating structured diagrams of automatic control systems				
Kodirov D., Ikromjonova N.	437			
On delayed technological objects and their characteristics	437			
Uzokov F.	_			
Graphing circles, parabolas, and hyperbolas using second-order linear equations				
in excel				
ECONOMICAL SCIENCES				
Zulfikarova D.	440			
Issues of developing women's entrepreneurship	449			
Ergashev U., Djurabaev O.				
Methods for assessing the effectiveness of waste recycling business activities in the	455			
environmental sector				