

ISSN 2181-8622

Manufacturing technology problems

Scientific and Technical Journal

Namangan Institute of

Engineering and Technology

INDEX COPERNICUS
INTERNATIONAL

Volume 9
Issue 4
2024

DEVELOPMENT OF A PROGRAM FOR DETERMINING ECCENTRICITY BY ANALYZING THE MAGNETIC FIELD IN THE AIR GAP OF AN ASYNCHRONOUS MOTOR

VOHIDOV MIRABROR

Doctoral student of Tashkent State Transport University, Tashkent, Uzbekistan
Phone.: (0899) 826-2046, E-mail.: mirabrorvohidov1995@gmail.com
ORCID.: 0000-0002-0620-0359

Abstract: This article examines the work on identifying motor defects by calculating the magnetic field in the air gap of asynchronous motor used in railway rolling stock at industrial enterprises. The software for calculations and visualization is programmed in Python, and its analysis is presented.

Keywords: Magnetic field, magnetic induction, bearing diagnostics, electric motor, air gap conductivity.

Introduction. During the operation of asynchronous motors, the magnitudes of the magnetic field in the air gap were theoretically calculated using its parameters. Data was collected and analyzed through technical means.

The calculation of diagnostic signals for the eccentric state is based on the calculation of the magnetic field in the engine. In an unsaturated machine, the magnetic strength of the steel parts is significantly less than the air gap, so for unsaturated machines we assume that the magnetic conductivity of the steel is $\mu_p = \infty$.

Literature review. One of the most common methods for describing the magnetic field in the air gap is the comparative conductivity method, which was developed in the works of A.I. Woldek, B. Geller, V. Gamata, and N.G. Nikiyana, and others [5], [4] [1]. According to this method, the field in the air gap, the magnetomotive force (MMF) of the winding, and the conductivity of the air gap are expressed as the sum of harmonics. The main drawback of this method is the difficulty of accounting for the saturation of the magnetic circuit. The magnetic field in the air intake has a complex harmonic composition, determined by the diagram of the stator and rotor windings, the configuration and characteristics of the magnetic cycles, the state and operating mode of the asynchronous machine. To simplify the expressions, we introduce the designation of the harmonic quantity.

Methodology & empirical analysis. The programming language (Python) allows the user to analyze the magnetic field and its deviations from the norm. Based on the induction, frequency, and amplitude entered by the user, a 3D magnetic field graph and deviations from the norm are displayed in the form of a histogram diagram. The code creates a user-friendly interface for diagnostics and visual analysis.

In general, the field induction harmonics in the air gap, taking into account air gap and air gap conductivity, magnetic strength, and bending, can be described by the following expressions [5], [4], [10], [11]:

$$\widetilde{A}_v = f(t, \varphi) = A_{vm} \cos \left(\omega_v t - v\varphi - \varphi_0 + \frac{2vxb_{sk}}{l_\delta D_a} \right) \quad (2.1)$$

$$\widetilde{A_{\nu}} = f(t, \varphi) = A_{\nu m} \cos \left(\omega_{\nu} t - \nu' \varphi_{\vartheta} - \varphi_0 + \frac{2\nu' p x b_{sk}}{l_{\delta} D_a} \right) \quad (2.2)$$

Here

$A_{\nu m}$ - ν^{th} harmonic amplitude;

$\omega_{\nu}, \omega_{\nu}$ - the circular rotation frequency of the field harmonic;

ν - the number of even polar harmonics (absolute order);

$\nu' = \nu/p$ relative order of harmonics;

p - number of pole pairs of the engine;

$\varphi, \varphi_{\vartheta}$ - the angular coordinate of the stator's circumference (physical and electrical angles, respectively);

φ_0 - the initial phase of middle harmonics along the length of the machine;

x - the coordinate of the machine core length;

b_{sk} - linear bend along the length of the machine core;

l_{δ} - the length of the machine core;

D_a - inner diameter of the stator

Thus, denoting a certain \tilde{X} value with the "tilde" symbol X indicates that the value X is a function of time and space (an angle along the circumference of the stator) and represents one harmonic of a certain value X . In a particular case, \tilde{X} can only be a function of time or space. At the same time, the constant component \tilde{X} can be designated (according to Fourier series theory), which is acceptable as a harmonic at a frequency $\omega = 0$ and when the number of polar pairs $\nu = 0$. The distribution of a specific physical quantity can be expressed as the sum of the harmonics X (magnetic strength, induction, air gap conductivity) in the air gap and can be written as:

$$X = f(t, \varphi) = X_0 + \sum_{k=1}^{\infty} X_{km} \cos(\omega_k t - \nu \varphi - \varphi_0) = \sum_{k=0}^{\infty} \tilde{X}_k \quad (2.3)$$

The angular velocity of rotation in the harmonic in the air gap described by the expressions (2.1) and (2.2) is equal to the phase velocity of the wave:

$$\Omega_{\nu} = \frac{\omega_{\nu}}{\nu}$$

The forward-rotating harmonic has parameters $\omega_{\nu} > 0$ and $\nu > 0$. The reverse-rotating harmonic is generally defined by the condition $\omega_{\nu}, \nu < 0$. For clarity, the reverse-rotating harmonic has parameters $\omega_{\nu} < 0$ and $\nu > 0$. According to (2.1) and (2.2), the harmonic quantity can also be expressed in standard form:

$$\dot{A}_{\nu} = A_{\nu m} e^{j\varphi_0} \quad (2.4)$$

According to the specific magnetic conductivity method of the air gap, it is possible to ignore the unsaturated magnetic period of the machine and the magnetic voltage of the magnetic conductors relative to the magnetic voltage of the air gap ($\mu_{cr} = \infty$), the field in the air gap is determined by the product of the magnetic voltage therein and the specific magnetic conductivity of the gap [5]:

$$\sum \widetilde{B}_{\delta} = \sum \widetilde{F}_{\delta} \sum \widetilde{\lambda}_{\delta} = (\sum \widetilde{F}_{\delta s} + \sum \widetilde{F}_{\delta r}) \sum \widetilde{\lambda}_{\delta} = \sum \widetilde{F}_{\delta s} \sum \widetilde{\lambda}_{\delta} + \sum \widetilde{F}_{\delta r} \sum \widetilde{\lambda}_{\delta} \quad (2.5)$$

Here

$\sum \widetilde{F}_{\delta}$ - the sum of the magnetic stresses of the air gap formed in the stator and rotor windings.

$\sum \widetilde{\lambda}_\delta$ – air gap magnetic conductivity (air gap conductivity)

$\sum \widetilde{F}_{\delta s}, \sum \widetilde{F}_{\delta r}$ - the magnetic stresses generated by the stator and rotor windings in the air gap, respectively.

Magnetic stresses $\widetilde{F}_\delta, \widetilde{F}_{\delta s}, \widetilde{F}_{\delta r}$ and air gap conductivity $\widetilde{\lambda}_\delta$ show the sum of harmonics according to the values scattered over the Fourier series. The magnetic field in the air gap is determined by the full MMF of the winding.

$$F_{\delta v} = \frac{F_{\Sigma v}}{k_{\mu v}}$$

Here, $k_{\mu v}$ is the saturation coefficient for the magnetic circuit of the v^{th} harmonic of the field. The value of $k_{\mu v}$ is taken from the electromagnetic calculation of the asynchronous motor.

When calculating the magnetic field in the air gap, we take into account the following assumptions.

- with static and dynamic eccentricity, the displacement of the axis of the outer surface of the rotor occurs parallel to the axis of the inner surface of the stator;
- the magnitude of the rotor sliding does not change;
- the influence of induction harmonics in the air gap on saturation is taken into account by the saturation coefficient $k_{\mu v}$;
- the inductive resistance of distribution is constant in all slots of the stator windings and rotor windings.

A magnetic field in the same air gap. Magnetic conductivity of the air gap.

In the absence of eccentricity in the same air gap, the conductivity of the air gap is determined by the formula [5]:

$$\lambda_\delta = \frac{\mu_0}{\delta_0 k_\delta} \quad (2.6)$$

Here

$\mu_0 = 4\pi \cdot 10^{-7}$ Gn/m – magnetic constant

δ_0 – air gap size

k_δ - air gap coefficient

The field calculation according to formula 2.6 can be obtained using the main harmonics of the field. According to [5], to account for the magnetoconductivity of the serration, we can express the conductivity of the air gap in the following form.

$$\lambda_\delta = \frac{\mu_0}{\delta_0 k_\delta} \frac{\lambda_{z1}^* \cdot \lambda_{z2}^*}{\lambda_{z1}^* + \lambda_{z2}^* - \lambda_{z1}^* \cdot \lambda_{z2}^*} \quad (2.7)$$

$\lambda_{z1}^*, \lambda_{z2}^*$ - The relative conductivity of the air gap and the conditional serration structure of the rotor and stator, respectively.

$$\lambda_{z1}^* = 1 + \sum_{k_{z1}} \Lambda_{z1 k_{z1}}^* \cos(k_{z1} z_1 \varphi) \quad (2.9)$$

$$\lambda_{z2}^* = 1 + \sum_{k_{z2}} \Lambda_{z2k_{z2}}^* \cos(k_{z2}z_2\varphi) \quad (2.10)$$

$\Lambda_{z1}^*, \Lambda_{z2}^*$ lar – relative amplitude of the air gap conductivity of the gear harmonic. z_1, z_2 the number of stator and rotor slots, respectively.

Substituting (2.9) and (2.10) into (2.8), we can obtain the conductivity of the serration air gap of the stator and rotor for the faultless state of the asynchronous machine.

$$\begin{aligned} \sum \lambda_\delta = \Lambda_0 \left(1 + \sum_{k_{z1}=1}^{\infty} \Lambda_{z1k_{z1}}^* \cos(k_{z1}z_1\varphi) + \sum_{k_{z2}=1}^{\infty} \Lambda_{z2k_{z2}}^* \cos(k_{z2}Z_2) \left(\frac{(1-s)}{p} \right) \omega t - \varphi \right) \\ + \sum_{k_{z1}=1}^{\infty} \sum_{k_{z2}=1}^{\infty} \Lambda_{z1k_{z1}}^* \Lambda_{z2k_{z2}}^* \left[\cos \left(\frac{(1-s)}{p} k_{z2}Z_2 \omega t - (k_{z1}Z_1 + k_{z2}Z_2)\varphi \right) \right. \\ \left. + \cos \left(\frac{(1-s)}{p} k_{z2}Z_2 \omega t - (k_{z1}Z_1 - k_{z2}Z_2)\varphi \right) \right] \quad (2.11) \end{aligned}$$

here

s - sliding of an asynchronous motor;

$\omega = 2\pi f$ consumption voltage rotation frequency

Analysis of (2.11) shows that, based on the different number of polar pairs $v = k_{z1}z_1 + k_{z2}z_2$, an interference harmonic of the air gap of the same frequency is involved in $\frac{(1-s)}{p}h_{z2}z_2\omega$ [5].

[5] provides graphs for calculating the conductivity harmonics of the air gap leading to magnetic permeability occlusion. The amplitudes of these harmonics depend on the geometric relationships of the tooth zone - the ratio of the gear compartment to the value of the groove slider is b_{III}/t_3 and b_{III}/δ_0 . The literature presents data for calculating the dental harmonic of a field up to $k_z=4$ of the fourth order.

Analytical expressions for calculating the amplitudes of tooth harmonics of air gap conductivity are given in the works of B. Geller and V. Gamata:

$$\lambda_{z_kz}^* = \beta(b_{\text{III}}/\delta_0) \frac{4}{v\pi} \left(0.5 + \frac{(b_{\text{III}}/t_z)^2}{0.78 - 2(b_{\text{III}}/t_z)^2} \right) \sin(1.6\pi v b_{\text{III}}/t_z), \quad (2.12)$$

$\beta(b_{\text{III}}/\delta_0)$ - b_{III}/δ_0 relativity is the calculation of the air gap conductivity harmonic according to 2.12 should ignore 2.7 and 2.8 k_δ , and at 2.9 and 2.10 the first conjugate should be changed to $1/k_\delta$. Because we take into account the equivalent change in the air gap at 2.12.

The magnetomotive force of the stator and rotor winding (MMF). The stator MMF according to [5] is written as follows:

$$\sum \widetilde{F_{\delta s}} = \frac{m_1 \sqrt{2}}{\pi} w_1 I_1 \sum_{v=(1+6c)p} \frac{k_{06v}}{v k_{\mu\nu}} \cos(\omega t - v\varphi) \quad (2.13)$$

here v^{th} - the number of polar pairs (absolute order) of the MMF harmonic of the stator ($c=0, \pm 1, \pm 2, \pm 3, \dots = \infty \dots +\infty$)

[5] Each harmonic of the stator field with the number of polar pairs ν , the MMF of the rotor and the windings of the rotor can be written in the form of the following expression, which creates a system of currents and a spectral harmonic.

$$\sum \widetilde{F}_{\delta s} = \frac{Z_2}{\sqrt{2}\pi} I_{rv} \sum_{\nu=(1+Z_2c')} \frac{1}{\nu k_{\mu\nu_1}} \cos(\omega_{rv}t - \nu_r\varphi - \nu_r\varphi_{vr}) \quad (2.14)$$

$$\text{Harmonic amplitude } F_{\delta rvm} = \frac{Z_2}{\sqrt{2}\pi\nu_r k_{\mu\nu_r}} I_{rv},$$

here $c'=0, \pm 1, \pm 2, \pm 3, \dots = \infty \dots +\infty$ (The c' notation is inserted to differentiate the harmonic expression on the stator and rotor)

I_{rv} – The actual current in the rotor rod caused by the ν^{th} harmonic of the air gap field.

ω_{rv} – The ν^{th} harmonic of the rotor's MMF according to the rotor rotation frequency relative to the stator.

$\varphi_{vr} - c' = 0$ rotor winding phase on MMF

In (2.14) we obtain the MMF harmonic of the rotor when $c' = 0$, the order of which is equal to the order of the field harmonic generated by the number of polar pairs $\nu_r = \nu$. This MMF harmonic is the rotor's reaction to the field harmonic in the air gap $B_{\delta\nu}$. For $c'=0, \pm 1, \pm 2, \pm 3, \dots$, we obtain the MMF rotor winding's gear harmonic from current I_{rv} due to the discrete position of the winding.

When $\nu_r = 0$, we accept a multipolar magnetic flux. If the body of an asynchronous motor is made of aluminum, this stability is small and can be neglected. Then the addition in 2.14 can be disregarded in the case where $\nu_r = 0$. In the case of a sufficiently large magnetic conductivity of a multipolar flow, its value is calculated separately.

Air gap magnetic field. The magnetic field in the air gap is represented by the expression 2.5. Each field harmonic $B_{\delta\nu}$, with the number of pole pairs ν , generates a current and MMF on the rotor, forming the initial harmonic $\nu_r = \nu + Z_2c'$, which is the number of pole pairs ν and the MMF of the rotor's serration harmonic.

Excluding the gear harmonics in the rotor, the field harmonic order $\nu=p \pm k$ exhibits the following composition.

1. The main harmonic of the field generated by the constant components of the air gap conductivity and the magnetomotive force (MMF) of the stator

$$B_{\delta\nu} = F_s \lambda_\delta \cos(\omega t - (p \pm k)\varphi);$$

1. The harmonics of the rotor reaction according to 2.14;

2. $\nu^n \neq \nu$ (the rotor's reaction to another field harmonic) is the product of the number of polar pairs and the rotor's MIC field harmonic permeability of the air gap λ_δ and the resulting order ν .

The rotor reaction to the $B_{\delta\nu}$ field harmonic [4] and the damping coefficient D_ν according to [1] can be considered. The value of D_ν is close to 1 for the main harmonic for the serrated order field harmonics and the idle mode. In perfectly symmetrical unsaturated asynchronous machines, there are main and serrated harmonics of the field

in the air gap, therefore a close approximation of the field in the air gap can be obtained without taking into account the damping field of the rotor slot. Dempering is taken into account by multiplying the main harmonic by D_v .

The resulting field at 2.5 involves harmonics of different orders and frequencies relative to the stator [1]:

1. Main harmonic $\nu = p$
2. Field harmonics in the stator are ordered by the serrated order. $\nu = p \pm k_{z1}Z_1$
3. Field harmonics in the rotor's serrated order $\nu = p \pm k_{z2}Z_2$
4. The serrated order of the harmonics of the rotor and stator field

$$\nu = p \pm k_{z1}Z_1 \pm k_{z2}Z_2$$

$\nu = p \pm k_{z2}Z_2$ and $\nu = p \pm k_{z1}Z_1 \pm k_{z2}Z_2$ unlike the main harmonic of the frequency field relative to the stator, the stator winding is assigned an EMF frequency, unlike the frequency of the power source.

Results. A three-dimensional image of a magnetic field created based on the input magnetic induction, frequency, and amplitude. This graph shows the spatial distribution of the magnetic field. This program allows the user to analyze and visualize the magnetic field based on various parameters. The program describes the magnetic field in three-dimensional space based on the input values of magnetic induction, frequency, and amplitude. This allows the user to see the spatial distribution of the magnetic field and evaluate its properties. (Photo -1).

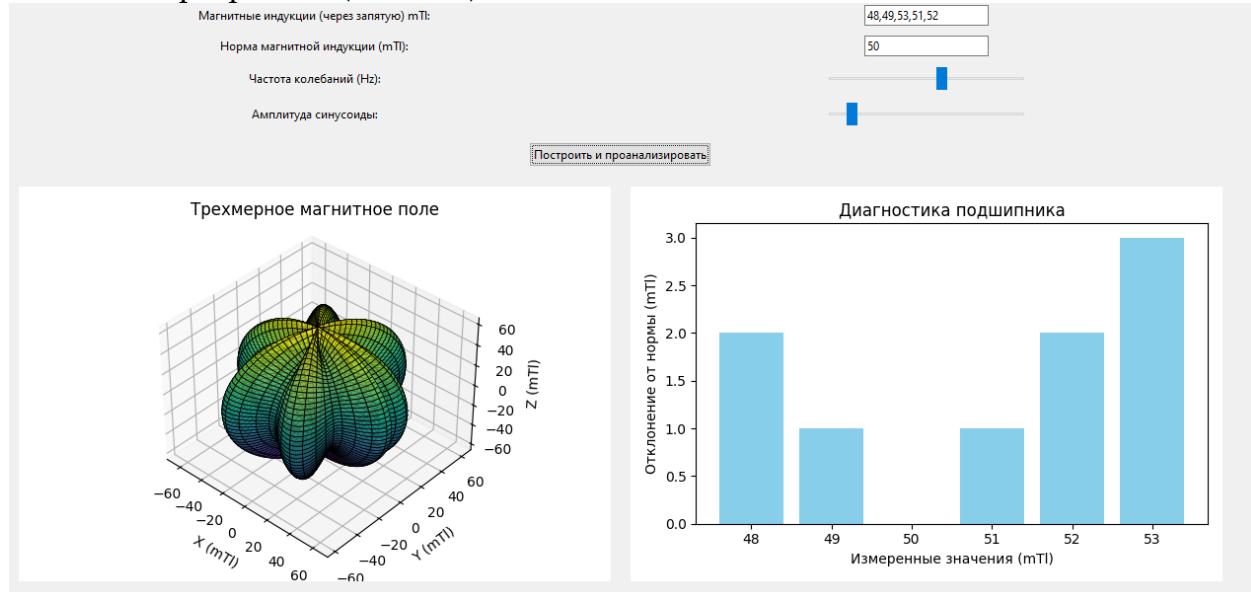


Photo 1. – Magnetic field visualization in Python

The deviation diagram from the norm also clearly shows the deviation for each value of the induction, which is important for determining the initial defects of the bearing. Diagrams and 3D graphics help the user see how the magnetic field is changing and can be used to identify potential problems.

Conclusions. This program is especially convenient for engineers engaged in bearing diagnostics and is designed for real-time analysis and presentation of results. This Python program allows the user to visualize a magnetic field and analyze its deviations from the norm. This is especially convenient for bearing diagnostics and eccentricity determination, helping to analyze changes in the magnetic field.

REFERENCES

- 1 Никиян, Н.Г. Многофазная реальная асинхронная машина: математическое моделирование, методы и средства диагностики [Текст]: Монография. / Н.Г. Никиян. - Оренбург: ГОУ ВПО ОГУ, 2003. - 334 с.
- 2 Митрофанов, С.В. Определение допустимой нагрузки асинхронной машины с повреждениями в клетке ротора [Текст]/ С.В. Митрофанов // Тезисы докладов региональной научно-практической конференции молодых ученых и специалистов Оренбуржья (часть 1). - Оренбург: Издательство ОГУ, 1999. - С. 105 - 106.
- 3 Пат. 55995 Российская Федерация, МПК⁷ G 01 R 31/34. Устройство для диагностики относительного эксцентрикитета ротора асинхронных двигателей [Текст] / Никиян Н.Г., Сурков Д.В.; заявитель и патентообладатель ГОУ ВПО «Оренбургский государственный университет». — №2004137249/28; заявл. 20.12.2004 ; опубл. 27.08.2006, Бюл. № 24 (II ч.). - 3 с.: ил.
- 4 Геллер, Б., Высшие гармоники в асинхронных машинах [Текст]: [Пер. с англ.]/Б. Геллер, В. Гамата-М.: Энергия, 1981. - 352с.: ил.
- 5 Электрические машины [Текст]. Учебник для студентов высш. техн. учебн. заведений / А.И. Вольдек. - 3-е изд., перераб. - Л.: Энергия, 1978. - 832 с., ил.
- 6 Вольдек, А.И., Расчет электромагнитного момента электрических машин с помощью метода удельной магнитной проводимости зазора [Текст] / А.И. Вольдек, Е.П. Брандина - Электричество.- 1973.- №8.-С..
- 7 Каасик, П.Ю. Асинхронные индукторные микродвигатели устройств автоматики [Текст] / П.Ю. Каасик, И.В. Блинов - Л.: Энергоиздат. Ленинградское отделение, 1982. - 152 с., ил.
- 8 Йондем, М.Е. Магнитная проводимость воздушного зазора асинхронной машины при эксцентрикитете ротора / М.Е. Йондем, Н.Г. Никиян, Г.С. Акопян // Изв. вузов "Электромеханика".- 1985 - №5 - С.32-35.
- 9 Гаинцев, Ю.В. Добавочные потери в асинхронных двигателях [Текст] / Ю.В. Гаинцев - М. : Энергоатомиздат, 1981. - 184с.
- 10 Вибрации и шум электрических машин малой мощности [Текст]. -Л. : Энергия, 1979. - 206С. : ил.; 21см.
- 11 Шубов, И.Г. Шум и вибрация электрических машин [Текст] / И.Г. Шубов. -Изд. 2-е перераб. и доп.. -СПб. : Энергоатомиздат, 1986. - 205с. : ил.
- 12 Йондем, М.Е. Магнитная проводимость воздушного зазора асинхронной машины при эксцентрикитете ротора [Текст] / М.Е. Йондем, Н.Г. Никиян, Г.С. Акопян // Изв. ВУЗ-ов. Электромеханика. -1985. -№5. -С.32-35.

13 Гашимов, М.А. Диагностирование эксцентризитета и обрыва стержней ротора в асинхронных электродвигателях без их отключения [Текст] / М.А. Гашимов, Г.А. Гаджиев, С.М. Мирзоева // Электротехника. - 1998. - №10.-С.46-51.

14 Гашимов, М.А. Исследование в целях диагностики физических процессов функционирования электрических машин при неисправностях в обмотке статора и ротора [Текст] / М.А. Гашимов, С.В. Абдулзаде // Электротехника- 2004. - №2. - С.22-26.

15 Сорокер, Т.Г. Методика теоретического исследования общего случая несимметрии короткозамкнутого ротора [Текст] / Т.Г. Сорокер, К.М. Кручинская // Сб. трудов ВЗПИ. — М., 1970. - Вып. 66. - С. 21-32.

16 Богуславский, И.З. Особенности полей асинхронного двигателя с несимметричной клеткой при несинусоидальном питании [Текст] / Богуславский И.З. И Изв. АН СССР. Энергетика и транспорт. - 1990. - № 2. - С. 77-87.

17 Кручинская, К.М. Влияние обрыва стержней клетки ротора на рабочие характеристики асинхронных двигателей [Текст] / Кручинская К.М. // Электротехническая промышленность, сер. Электрические машины. - 1967.-Вып. 283.-С. 13-18.

18 Никиян, Н.Г. Расчет токов в беличьей клетке ротора при дефектах у нескольких стержней [Текст] / Н.Г. Никиян, М.Е. Йондем, С.С. Бояджян // Электричество. - 1991. - № 5.- С. 66-68.

19 Никиян, Н.Г. Методы расчета токов и потерь асинхронной машины с несимметричной клеткой ротора [Текст]: монография / С.В.Митрофанов, Н.Г. Никиян; - Оренбург: Изд. ОГУ, 1999. - 49с.

20 Митрофанов, С.В. Математическая модель трёхфазной асинхронной машины с несимметричной короткозамкнутой клеткой ротора [Текст] : дис. канд. техн, наук : 05.09.01: / С.В. Митрофанов. - Оренбург : ОГУ, 1999.-161с.

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT INDUSTRY

Korabayev Sh.	3
From street traffic to space: innovations in autonomous vehicles	
Egamov N.	10
Investigation of vertical forced vibration in the longitudinal - vertical plane of a binder that softens the crush between cotton rows	
Khamraeva S., Kadirova D., Davlatov B.	15
Determination of alternative technological factors for the production of functional fabric with a complex structure	
Khamraeva S., Kadirova D., Daminov A.	21
Designing fabrics for a given stretchability	
Kuliyev T., Rozmetov R., Tuychiev T., Sharipov Kh.	28
The effect of the angle of heat agent supply to the drying - cleaning equipment on cotton quality and cleaning efficiency of the equipment	
Abdujabbarov M., Alieva D., Karimov R.	35
Determination of the influence of the length of the tested yarn samples on their mechanical characteristics	
Jurayeva M., Nabidjonova N.	41
Research on physical and mechanical properties of fabric selected for special clothing of preschool children	
Yangiboev R., Allakulov B., Gulmirzayeva S.	45
Studying the alternative technological factors of the loom in the production of textiles based on basalt yarn	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	55
Analysis of the main technological parameters of the condenser	
Mavlyanov A., Mirzaumidov A.	60
The scientific basis of the lightened shaft	
Elmanov A., Mirzaumidov A.	69
Modeling of laser processing of thin-walled steel gears	
Nurillaeva Kh., Mirzaumidov A.	77
Cotton cleaner with multifaceted grates	
Ganikhanov Kh., Mavlyanov A., Abdusamatov A., Mirzaumidov A.	83
The equation of motion of cotton fiber in the condenser	
Khuramova Kh., Xoshimxojaev M.	89
Progressive method of cotton regeneration	

Abdukarimova M., Lutfullaev R., Usmanova N., Mahsudov Sh.

Evaluation of aestheticity of women's dress models based on deep learning models

94

**GROWING, STORAGE, PROCESSING AND AGRICULTURAL
PRODUCTS AND FOOD TECHNOLOGIES**

Zufarov O., Isroilova Sh., Yulchiev A., Serkayev K.

101

Theoretical aspects of obtaining oxidation-stable vegetable oils

Toshboyeva S., Dadamirzaev M.

110

Filling sauces for canned fish and their layer kinetics

Atamirzaeva S., Saribaeva D., Kayumova A.

115

Prospects for the use of rose hips in food technology

Turgunpolatova Sh.

121

Study of the quality of fruit pastela products

Sultanov S.

Analysis of experiments on the process of deodorization of vegetable oil using 126
floating nozzles

Adashev B.

132

Physical-chemical analysis of oil taken from seeds of safflower

Ismailov M.

137

Influence of surface layer thickness on hydraulic resistance of the device

Khurmamatov A., Boyturayev S., Shomansurov F.

142

Detailed analysis of the physicochemical characteristics of distillate fractions

Madaminova Z., Khamdamov A., Xudayberdiyev A.

Preparing peach seed for oil extraction and improving oil extraction through 154
pressing

Aripova K.

162

Methods of concentration of fruit juices and their analysis

Djuraev Kh., Urinov Sh.

Theoretical and experimental study of the crack formation device in the shell of 168
apricot kernels

CHEMICAL TECHNOLOGIES

Urinboeva M., Abdikamalova A., Ergashev O., Eshmetov I., Ismadiyarov A.

175

Study of the composition and main characteristics of petroleum oils and their
emulsions

Tursunqulov J., Kutlimurotova N.

Application of 1-(2-hydroxy-1-naphtoazo)-2-naphthol-4-sulfo acid in 182
amperometric determination of scandium ion

Kucharov A.

191

Development of coal enrichment and gas extraction technology for the use of construction materials industrial enterprises

Abdulkhaev T., Mukhammadjonov M., Mirzarakhimova F.

Isotherm of benzene adsorption and differential heat of adsorption on AgZSM-5 zeolite **198**

Vladimir L., Eshbaeva U., M.Ergashev

Innovative environmental packaging for separating storage of two components, allowing to extend the lifetime without preservatives **204**

Kodirov O., Ergashev O.

Energetics of adsorption of water molecules to aerosol **212**

Yusupov K., Erkabaev F., Ergashev D., Rakhimov U., Numonov M.

Synthesis of melamine-formaldehyde resins modified with n-butanol **219**

Ergashev O., Abdikamalova A., Bakhronov Kh., Askarova D., Xudoyberdiyev N., Mekhmonkhonov M., Xolikov K.

Thermodynamics of Congo red dye adsorption processes on mineral and carbon adsorbents **228**

Ergashev O., Maximov I.

Water vapor adsorption isotherm in zeolites regenerated by microwave thermoxidation method **235**

Jumaeva D., Zaripbaev K., Maximov I.

The elements and oxide content of the chemical composition of the feldspar **242**

MECHANICS AND ENGINEERING

Khudoyberdiev U., Izzatillaev J.

Analysis of research on small wind energy devices **249**

Atajonova S.

Mathematical model of system analysis of technological processes in the form of key principles for effective decision-making **258**

Kuchkarbayev R.

Mathematical modeling of heat transfer through single-layer and multi-layer cylindrical walls in buildings and structures **264**

Atambaev D.

Difference in the length of individual yarn composition of twisted mixed yarn and comparative analysis of single-thread elongation deformations **269**

Abdullayev S.

Modeling the functionalities of an automated system for managing movement in the air **276**

Turakulov A.

Describing computational domains in applications for solving three-dimensional problems of technological processes **285**

Mamaxonov A.

Mathematical model of machine aggregate of tillage equipment process	293
Khudayberdiyev A.	304
Technical and economic aspects of processing pyrolysis distillate into motor fuel	
Abdurahmonov J.	311
Research results on the selection of the mesh surface of a lint-cleaning device	
Vohidov M.	
Development of a program for determining eccentricity by analyzing the magnetic field in the air gap of an asynchronous motor	319
Utaev S., Turaev A.	
Analysis of methods and prospects for application of optical methods for control of working surfaces of cylinder liners of internal combustion engines	327
Boltabayev B.	
Determination of seed damage in the pneumatic transport system by conducting experiments	335
Azizov Sh., Usmanov O.	
Simulation of equation of motion of the new construction gin machine	339
Sharibaev N., Homidov K.	
Theoretical analysis of the coefficient of friction induced by the pressure force of a vertical rope acting from above and below	347
Aliyev B., Shamshidinov M.	
Improvement of the linter machine and development of its working scheme	356
Mukhametshina E.	
Analysis of cotton flow behavior in different pneumatic pipes	362
Yangiboev R., Allakulov B.	
Obtaining and analyzing correlational mathematical models of the sizing process	369
Mirzakarimov M.	
Efficient separation of fibers from saw teeth in the newly designed gin machine	379
Azambayev M.	
Measures to improve the quality of fluff	387
Abdullayev R.	
Scientific innovative development of cotton gining	392
Kholmirzaev F.	
Air flow control factors in pneumatic transport device	397
Sharibaev N., Makhmudov A.	
Separation of cotton from airflow in pneumatic transport systems of the cotton industry	404
Sharibaev N., Mirzabaev B.	

Effect of steam temperature on yarn moisture regulation in textile industry **410**

Sultanov S., Salomova M., Mamatkulov O. **415**

Increasing the useful surface of the mesh surface

Muhammedova M. **421**

Kinematics of the foot in a healthy person's foot and ankle injury

ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCATION

Abdullayev H. **429**

Algorithm for creating structured diagrams of automatic control systems

Kodirov D., Ikromjonova N. **437**

On delayed technological objects and their characteristics

Uzokov F. **444**

Graphing circles, parabolas, and hyperbolas using second-order linear equations in excel

ECONOMICAL SCIENCES

Zulfikarova D. **449**

Issues of developing women's entrepreneurship

Ergashev U., Djurabaev O. **455**

Methods for assessing the effectiveness of waste recycling business activities in the environmental sector
