ISSN 2181-8622

Manufacturing technology problems

Scientific and Technical Journal Namangan Institute of Engineering and Technology

INDEX 🛞 COPERNICUS

INTERNATIONAL

Volume 9 Issue 3 2024

STUDY OF THE EFFECT OF ADHESIVE SUBSTANCES ON PAPER STRENGTH PROPERTIES

ESHBAEVA ULBOSIN

Professor of Namangan Institute of Engineering and Technology, Namangan Uzbekistan Phone.: (0890) 805-9955, e-mail.: <u>guli-67@mail.ru</u>

ALIEVA NARGIZA

Vice-Rector of Educational Affairs of Tashkent Institute of Economics and Pedagogy, Tashkent, Uzbekistan Phone.: (0890) 905-0567, e-mail.: <u>nargis_03@mail.ru</u> *Corresponding author

Abstract: In the article, modified cationic starch (MCS) containing 80 percent of cotton cellulose, 20 percent of polyester (lavsan) fiber waste, carboxyl methyl cellulose (NaCMS) glue in the second stage, and acrylic emulsion (AE) in the third stage are 0.5 to 2 percent of the paper pulp. Paper samples were taken by adding up to .5% and the obtained paper samples were comparatively analyzed. The results showed that the quality indicators of the paper samples improved by 15%.

Keywords: cellulose, paper, fibrous waste, polyester (lavsan) synthetic fiber, breaking length, ashiness, bending resistance, adhesive, polymer, emulsion.

Introduction. Papers are fiber materials, mainly different types of fibers are crushed, and fillers and adhesives are added to the composition. The properties of paper are explained as elastic-plastic, capillary-porous colloidal material. The origin of the term "Paper" is still unclear. However, in European countries, this concept is associated with the word papyrus. In fact, paper is the rarer in English, das Rariyer in German, le rariyer in French [1]. The most popular and widely used raw material for paper production is cellulose. Cellulose (S₆N₁₀O₅) is a complex organic compound of carbon, hydrogen and oxygen. Cellulose is a polymer composed of long chains of linear molecules. All parts of the molecules are connected with each other using glucose anhydride units $1\rightarrow 4-\beta$ glucoside [2].

The pulp and paper industry is an industry related to wood processing. Currently, the world paper industry produces more than 800 types of paper and cardboard with different, completely opposite properties, the main raw material for the production of paper and cardboard in the world (more than 90%) wood is cellulose [3].

Wood pulp is used to obtain high-quality and high-strength paper from wood pulp [4]. The advantages of these raw materials are reflected in the high level of flexibility, whiteness, smoothness and number of folds in the paper [5].

In recent decades, the production and consumption of wood has increased significantly in most countries of the world. Currently, 15,000 types of wood products are known, and this number can increase indefinitely. Forest specialists call this fact a technical revolution in the use of wood. On average, it takes 25-30 years to grow a new tree [6]. Currently, the issue of rational use of forest resources has become an urgent problem. Alternative raw materials for paper production are the main source, especially in many Asian countries that do not have forests and have limited wood resources. Currently, non-wood fibers are mainly used in the world for the production of special

types of paper. Cotton, linen, hemp fibers are used to obtain high-quality types of paper. In this regard, the use of wood waste, wood biomass and alternative secondary raw materials is one of the solutions to this problem.

There are not enough wood reserves in Uzbekistan. Therefore, obtaining cellulose using alternative and secondary raw materials available in the Republic is an urgent task today. Uzbekistan was the first among the CIS countries to conduct large-scale technological experiments in the field of cellulose production using alternative fibers. In the past few years, he has taken a number of successful and useful steps in this direction.

Uzbekistan is rich in annual plant waste, which is a raw material for the production of cellulose. Currently, only 6-7% of the total reserves of non-wood alternative plant materials are used. Processing only 10% of annual agricultural and plant waste allows to obtain more than 250,000 tons of semi-finished products for the production of paper and cardboard per year. Paper and cardboard products made from non-wood alternative plant materials, in particular, annual plants and agricultural waste, are promising in the production of packaging and corrugated cardboard products [7].

Today, in our Republic, cellulose obtained from annual plants is the main raw material for paper production. Cotton is one of the most common types of such fibers. This is the largest amount of unconventional raw materials. Paper made from cotton and fiber waste has high whiteness and is often used in the production of special types of paper (banknotes, state declarations, etc.).

The printing properties of paper are determined by the properties of fibrous materials in the paper pulp, primarily by the properties of cellulose and additional fiber suspension. In paper production, mechanical parameters are important parameters affecting printing properties. When adding adhesives to paper, along with the hydrophobicity of the paper, the level of strength increases and the ability to absorb moisture decreases, and the smoothness of the paper increases, and at the same time, the formation of additional hydrogen bonds between the fibers in the mass. helps to be.

The main goal of this scientific article is to use innovations in pulp and paper production, to obtain products with new properties and to achieve environmental standards due to the use of waste. The work is aimed at the improvement of a new technology that allows to obtain paper using secondary waste fibers, reduce the amount of waste, increase the range of paper and save electricity in the pulp and paper industry.

The purpose of this experiment is to obtain paper samples using different types of adhesives used in the paper production process in order to increase and stabilize the hydrogen bonding forces between the primary and secondary fibers in the paper pulp, and to determine the physico-mechanical properties of these adhesives. and consists of studying the effect on printing properties (Table 1).

Research work was carried out in three stages. In the first stage, modified cationic starch (MCS) containing 80% of cotton cellulose and 20% of polyester (lavsan) fiber waste, in the second stage, carboxyl methyl cellulose (NaCMS) glue and in the third stage, acrylic emulsion (AE) in the composition of paper pulp from 0.5% Paper samples were

taken by adding up to 2.5% and the obtained paper samples were analyzed comparatively.

In the first stage, the technological and economic feasibility of using modified cationic starch (MCS) was evaluated and their effect on paper strength parameters was studied. MCS is a high-quality component for printed materials, it forms a thin film on the surface of the paper, improves the durability and resistance to external effects of the printed material, and is often used as a film-forming agent. The effect of MCS on the mechanical properties of paper was studied [8].

The obtained results show that in the process of obtaining printed paper with MCS adhesive, the strength of the paper increased by 5%. This can be explained by the interaction of the adhesive with cellulose fibers, the formation of hydrogen bonds with the cationic starch fibers due to the presence of anionic groups in fillers due to the mechanism of adhesion of small fibers to each other. It can be explained that the ash level of the experimental papers increased by 3 times, the whiteness level of the paper increased with the increase in the volume of filler, adhesive and synthetic fibers in the paper mass, and the whiteness level increased due to the better retention of kaolin and cellulose fine fibers by MCS glue.

Indicators						Adhe	esives					
	MCS			Na CMS				AE				
Options	1	2	3	4	5	6	7	8	9	10	11	12
Amount of adhesive in	0,5	1,5	2,0	2,5	0,5	1,5	2,0	2,5	0,5	1,5	2,0	2,5
paper sellulose, %												
Cotton sellulose, %	100	80	80	80	100	80	80	80	100	80	80	80
Polyester (lavsan) fiber	-	20	20	20	-	20	20	20	-	20	20	20
waste, %												
Break length, m	3380	3375	3386	3395	3394	3398	3405	3408	3398	3404	3408	3412
Whiteness level, %	86	87	86	88	87	91	90	91	85	87	90	89
Interruption	31,0	31,5	32,8	33,0	32,6	32,8	33,4	34,2	32,6	33,3	34,7	34,9
voltage, N												
Bending, i.b.s.	44	54	65	86	46	52	81	96	45	60	78	97
Grayness, g	1,2	5,5	4,6	4,9	1,0	2,6	3,1	3,5	1,7	2,6	3,7	4,9

Table 2. Effect of adhesives on physical and mechanical properties of experimental papers

At the second stage, NaCMS sodium salt carboxymethylcellulose glue was used. Carboxymethylcellulose (CMS) is an acidic ester of cellulose and glycolic acid ON-SN₂-SOON. This ether is obtained in the form of the sodium salt, while being economically viable due to its low cost and easy availability. NaCMS was used as an adhesive in paper in this scientific work.

The obtained results helped to increase the strength properties of the paper due to its unique physico-chemical properties, which are presented in the literature as a component of NaCMS paper pulp. When the amount of NaCMS in the paper increased by 2.5%, it was observed that the strength properties increased up to 8%. When taking samples of NaCMS paper, despite the addition of 20% of polyester (lavsan) fiber waste, it was observed that the strength properties increased by 10%. NaCMS significantly increases the strength properties of the paper and is more promising and effective due to its hydrophobicity.

At the third stage, paper samples were taken by adding acrylic emulsion polymer adhesive compounds. Acrylic (polymethylacrylate) emulsion is an inconspicuous white liquid with a pH of 6.0-8.5, a relative viscosity of at least 1.75, and a monomer mass fraction of no more than 0.35%. Compared with the paper samples with acrylic emulsion added to the paper pulp and the paper samples containing MCS and NaCMS glue, it was observed that the breaking length was improved by 15%. The expediency of using a new acrylic emulsion polymer glue instead of the traditionally used MCS and NaCMS glue was based on the experimental method. Acrylic emulsion not only improves the mechanical performance of the paper, but also increases the optical properties and whiteness of the paper by 12%.

The results showed that the quality indicators of the paper samples improved by 15%. The properties of the polymer adhesive samples containing synthetic compounds were found to be in accordance with the established standards and the following were found: polymer adhesives have the necessary adhesion to ensure a strong bond with the paper mass, elasticity to the paper samples gives, increases the break length. Thus, the expediency of using MCS, NaCMS and acrylic emulsion as adhesives in improving the strength indicators of paper samples was determined. At the same time, the expediency of using a synthetic binder containing MCS, NaCMS and acrylic emulsion in improving the quality of paper and cardboard samples (breaking length by 20%, optical indicators by 12%) was analyzed based on experiments.

In this scientific work, it was possible to obtain paper samples with high strength by introducing adhesives together with synthetic waste fibers in the paper production process [9].

Summing up, it can be said that the paper pulp consists of (80%) cotton cellulose and (20%) polyester (lavsan) fibrous waste and chemically active (2-2.5%) adhesives. in this case, it was demonstrated that dispersions of cellulose-chemically active adhesives create a high-strength bond between cotton cellulose and waste fibers, and it is possible to obtain high-quality, high-quality paper that meets the requirements of the printing process.

References

S. Stefanov. Printing: printing methods and technologies / M.: August Borg.

2. Production of packaging products. Electronic resource. – access mode: http://limpask.ru/development-of-the-gravure-printing-market/. 76 p.

3. Toliver-Nigro Heidi. Tekhnologii Pechati/ Moscow. 5-e izd. - M. PRINT-MEDIA center, 2006. 232 p.

4. A.A. Mandrusov. Minimization of ink misalignment in flexographic printing by obtaining polyethylene films with desired properties: dissertation for the study of the degree of candidate of technical sciences / 05.02.13. — Moscow, 2007.

5. D.H. Ahmed, H.W. Kang, H.J. Sung. Non-Newtonian effect on ink transfer for gravure printing//IEEE International Symposium on Assembly and Manufacturing. Suwon, 2009, pp. 165-166.

6. K.Kh. Nguyen. Influence of the parameters of the processing of polymer loops by "corona discharge" on the properties of the surface / dissertation for the study of the degree of candidate of technical sciences: 17.05.06. - Moscow, 2009. - 121 p.

7. Eshbaeva U.J., Jalilov A.A., Rafikov A.S. Paper with the introduction of synthetic polymers. Monograph. - T.: Rainbow. -2018. - pp. 208.

8. Eshbaeva U.J., Jalilov A.A., Development of Technology for Producing Multilayer Paper and Cardboard Containing Synthetic Fibers // "NVEO - Natural Volatiles & Essential Oils". -2021, Vol. 5, -P. 10637-10644.

9. Eshbaeva U.J., Djalilov A.A. Composite technology for the production of paper and cardboard including synthetic fibers. Proceedings of the national akademy of sciences of Belarus Chemical series 2022 vol. 58. No. 4. Pp 418-422

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT **INDUSTRY**

Dadadzhonov Sh., Akhunbabaev O., Muxamadrasulov Sh.,				
Akhunbabaev U., Erkinov Z.				
Practice of production of polycomponent threas from a mixture of natural				
and chemical fibers				
Korabayev Sh.				
Determining the direct resistance coefficient of cotton fiber in the confusor	13			
tube				
Kulmatov I.				
Study of a new technological equipment for cleaning cotton raw materials	19			
from gross pollution				
Musayeva L., Polatova S.				
Choosing the main features of special clothing for riders, taking into account	24			
the requirements of consumers				
Djurayev A., Khudayberdiyeva M., Urmanov N.				
Kinematic analysis of a cam mechanism with elastic elements of the				
mechanism with elastic elements of paired cams of a boel mechanism of a				
weaving loom				
Rakhmonov H., Matyakubova J., Sobirov D,				
Analysis of the influence of the filling coefficient of the screw cleaner system				
with seeded cotton on the current consumption of the system				
Madrahimov D., Tuychiyev Sh.				
Impact of saw spacing on lint removal efficiency and quality in the linting	48			
process				
Monnopov J., Kayumov J., Maksudov N.				
Analysis of mechanical properties of high elastic knitted fabrics for	53			
sportswear design				
Kamolova M., Abdukarimova M., Usmanova N., Mahsudov Sh.				
Study of the Prospects for the Application of Digital Technologies in the	59			
Fashion Industry in the Development of the Creative Economy				
Ergasheva R., Khalikov K., Oralov L., Samatova Sh., Oripov J.	71			
Comprehensive assessment of two-layer knitted fabrics				
GROWING, STORAGE, PROCESSING AND AGRICULTURA				
PRODUCTS AND FOOD TECHNOLOGIES				
Arinov M. Kadirov II. Mamatov Sh. Malihovov M.				

Aripov M., Kadirov U., Mamatov Sh., Meliboyev M.

Experimental study of sublimation drying of vegetables by applying ultra – high frequency electromagnetic waves				
Alamov II Shomurodov D. Givasova N. Zokirova Sh. Egamberdiev F.				
Chemical composition analysis of miscanthus plant leaves and stems	81			
Valiance 7 Orithonena M				
	00			
Production of technology for obtaining oil from peanut kernels and refining	88			
the oil obtained in short cycles				
Khalikov M., Djuraev Kh.	~-			
The importance of systematic analysis in the drying process of fruit and	95			
vegetable pastilla				
CHEMICAL TECHNOLOGIES				
Kuchkarova D., Soliyev M., Ergashev O.				
Production of coal adsorbents by thermochemical method based on cotton	101			
stalks and cotton shells and their physical properties				
Askarova D., Mekhmonkhonov M., Ochilov G., Abdikamalova A.,				
Ergashev O., Eshmetov I.	108			
Some definitions about the mechanism of public-private partnership and its				
role in strengthening the activities of business entities and small businesses				
Ganiyeva N., Ochilov G.	117			
Effect of bentonite on benzene vapor adsorption in order to determine the	11/			
Very min or O Very M				
Kayumjanov O., Tusupov M.	100			
Synthesis of metal phthalocyanine pigment based on npk and calculation	122			
of particle size using the debye-scherrer equation				
Mukumova G., Turaev Kh., Kasimov Sh.				
Sem analysis and thermal properties of synthesised sorbent based on urea,	127			
formaldehyde, citric acid				
Amanova N., Turaev Kn., Beknazarov Kn., Sottikulov E., Makhmudawa V				
Makhinudova I.	133			
environments				
Esnbaeva U., Alleva N.	141			
Study of the effect of adhesive substances on paper strength properties				
Turayev T., Bozorova G., Eshankulov N., Kadirov Kh., Dushamov A.,				
Murtozoeva Sh.	110			
Cleaning of saturated absorbents used in natural gas cleaning by three-stage filtration method and analysis of their properties	146			
manufacture and analysis of all properties				

Muxamedjanov T., Pulatov Kh., Nazirova R., Khusenov A.				
Obtaining of phosphoric cation-exchange resin for waste water treatment	150			
MECHANICS AND ENGINEERING				
Abdullaev A., Nasretdinova F.	165			
Relevance of research on failure to power transformers, review	105			
Muhammedova M.				
Anthropometric studies of the structure of the foot	1/5			
Sharibayev N., Nasirdinov B.				
Measuring the impact of mechatronic systems on silkworm egg incubation	181			
for premium silk yield				
Abdullayev L., Safarov N.				
Electron beam deposition of boron-based coatings under vacuum pressure	189			
and experimental results of nitrogenation in electron beam plasma				
Kadirov K., Toxtashev A.	105			
The impact of electricity consumption load graphs on the power	195			
Makhmudov I.				
Theoretical basis of the methodology of selecting wear-resistant materials to	204			
abrasive corrosion				
Adizova A., Mavlanov T.				
Determining optimal parameter ratios in the study of longitudinal	209			
vibrations of threads in weaving process using a model				
Turakulov A., Mullajonova F.	215			
Application of the dobeshi wavelet method in digital processing of signals	215			
Djurayev Sh.				
Analysis and optimization of the aerodynamic properties of a new multi-	222			
cyclone device				
Djurayev Sh.				
Methods for improving the efficiency of multi-cyclone technology in air	228			
purification and new approaches				
Ibrokhimov I., Khusanov S.	226			
Principles of improvement of heavy mixtures from cotton raw materials	230			
Utaev S.				
Results of a study of the influence of changes in oils characteristics on wear	241			
of diesel and gas engine cylinder liners				
Abduvakhidov M.				
Review of research issues of determination of mechanical parameters of	249			
compound loading structures and working bodies				
Abduvakhidov M.	054			
Equilibrium analysis of flat elements of the saw working element package	250			

Kudratov Sh., Valiyev M., Turdimurodov B., Yusufov A., Jamilov Sh.				
Determining the technical condition of diesel locomotive diesel engine using				
diagnostic tools				
Juraev T., Ismailov O., Boyturayev S.				
Effective methods of regeneration of used motor oils				
Umarov A., Sarimsakov A., Mamadaliyev N., Komilov Sh.				
The oretical analysis of the fiber removing process				
Tursunov A.				
Statistical evaluation of a full factorial experiment on dust suppression				
systems in primary cotton processing facilities				
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION			
Yuldashev A.				
Historical theoretical foundations of state administration and the issue of	294			
leadership personnel				
ECONOMICAL SCIENCES				
Israilov R.	200			
Criteria, indicators and laws of small business development				
Eshankulova D.	205			
Demographic authority and its regional characteristics	303			
Kadirova Kh.	210			
Assessment of the efficiency and volatility of the stock market of Uzbekistan				
Mirzakhalikov B.				
Some definitions about the mechanism of public-private partnership and its				
role in strengthening the activities of business entities and small businesses				
Ganiev M.				
Income stratification of the population and opportunities to increase	321			
incomes				
Aliyeva E.	327			
Assessment of innovation activity enterprises using the matrix method				
Azizov A.	335			
Industry 4.0 challenges in China	000			
Azizov A.	341			
Industrie 4.0 implementation challenges in Germany				