ISSN 2181-8622

Manufacturing technology problems

Scientific and Technical Journal Namangan Institute of Engineering and Technology

INDEX COPERNICUS

INTERNATIONAL

Volume 9 Issue 3 2024

ANALYSIS OF THE INFLUENCE OF THE FILLING COEFFICIENT OF THE SCREW CLEANER SYSTEM WITH SEEDED COTTON ON THE CURRENT CONSUMPTION OF THE SYSTEM

RAKHMONOV KHAYRIDDIN

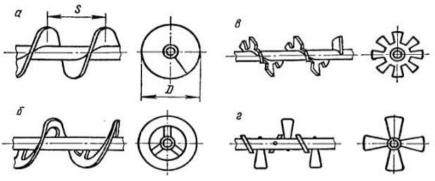
Professor of Bukhara Engineering Technological Institute, Bukhara, Uzbekistan Phone.: (0590) 718-7125, E-mail.: <u>raxmon@mail.ru</u>

MATYAKUBOVA JUMAGUL

Assistant of Urgench State University, Urgench, Karakalpakstan Phone.: (0594) 117-1114, E-mail.: <u>matyakubovajumagul@gmail.com</u>

SOBIROV DONIYOR

Senior teacher of Urgench State University, Urgench, Karakalpakstan Phone.: (0591) 421-7833, E-mail.: <u>sabirov19861010@gmail.com</u> *Corresponding author


Abstract: This article substantiates the possibility of increasing the productivity and efficiency of cleaning process machines by improving the design of the screw cleaner, which ultimately allows you to get high-quality products. Also, the factors affecting the movement of raw cotton in the chute of the device are determined, a scheme for calculating the movement of raw cotton together with the flow of hot air in the feed zone, as well as the forces acting on the surface of the mesh is presented. To solve the problem of the process of feeding the flow of raw cotton in a stationary mode, it is established that the pressure must be positive at an arbitrary section of the cross-section. In the article, using the Maple program, the dependence of the flow of raw cotton Q is determined for different values of the filling factor of the flow of raw cotton transferred from the hopper of the device, which are presented in the form of graphs.

Keywords: seed, cotton, screw cleaning, flow, process.

Introduction. By developing improved constructions of resource-efficient screw cleaners that perform the cleaning process, it is possible to increase the productivity of technological machines and achieve higher product quality. As a result of the creation of new designs of screw conveyors used for product cleaning in manufacturing enterprises, it is possible to increase the efficiency of technological machines, to make the working parts of the machines work for a long time, to increase the productivity, and to prevent the spare parts from colliding with various objects and being eaten by friction. Currently, in the cotton ginning industry, along with other vehicles, screw gins are used. Screw conveyors are used as distributors that distribute cotton raw material to the supply devices of ginning machines and ginning machines [1]. Screws are assembled from separate joints (links). The length of the screw can be different depending on the distance of cotton raw material transportation. The screw pipe is made of 3-4 mm thick steel plates with separate joints. The rigidity of the pipe is provided by longitudinal and transverse edge angles. The upper part of the screw is equipped with removable covers, and a supply system is installed on the side. In screw cleaners, the main driving mechanism is the screw.

Screw cleaners are mostly horizontal (G), at an angle to the horizon. The shell diameter and screw pitch are variable or fixed, the number of screw threads is single or double, the screw direction is right (P), left (L) or combined (K). The construction of the conveyor spiral is different, with a flat surface (for transporting fine-grained materials, cement, flour, gypsum, etc.), with a belt (for transporting granular products), with a profile (for cement and its mixtures, clays, etc.), with a blade (for mixing). are in forms (Fig. 1). Screw conveyors can be placed at an angle of up to 30°S relative to the horizon. Bearing supports are installed every 2.5-3 meters of the screw shaft. [2].

a- flat surface, b- ribbon, v- shaped, g- lobed **Figure 1**. Screw types of auger wipers.

The screw diameter and screw pitch dimensions of auger cleaners are shown in Table 1 in accordance with GOST 2037-82 (the screw pitch should be small for transporting dense materials)

Table 1. Screw convey	or diameter and scre	ew pitch dimensions.
-----------------------	----------------------	----------------------

Diameter, mm	Step, mm	Diameter, mm	Step, mm
100	80; 100	320	260;320
125	100; 125	400	320;400
160	125; 160	500	400; 500
200	160; 200	650	500; 650
219	270; 219	800	650; 800

When transporting or mixing granular materials, the diameter of the screw must satisfy the following condition $D_{\min} \ge a_{\max} k_{h\min}$ [3].

Methodology & empirical analysis.

Setting the problem and problem to be solved.

In order to increase the periodicity of the mechanisms of auger dusters in the transportation of seed and to reduce the vibration movement of the screw shaft, it is of great importance to theoretically study the movement of seed cotton falling from the threshing floor in a stream.

Identifying the factors affecting the movement of seeded cotton and analyzing its parameters, in particular, provides an opportunity to implement a positive approach to the creation of new constructions. Figure 2 shows the analysis of the parameters of the seeded cotton moving along with the air flow in the warp, which represent the dependence of the forces acting on the mesh surface. In addition, we assume that the flow behavior of seed cotton on the AVSE surface is one-dimensional (Fig. 2).

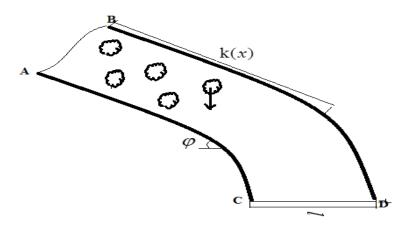


Figure 2. The scheme of the flow of Q cotton in the yarn.

In that case, we write the cotton flow using Euler's equation. The equation for the AVCD surface is as follows;

$$\rho \cdot \mathcal{G} \cdot S \frac{d\mathcal{G}}{dx} = -\frac{d(S \cdot p)}{dx} \tag{1}$$

Here is the density in the zone; ρ - speed in the zone; ϑ *P* - pressure in the zone; $S = k(x) \cdot l$ the law of change of the height of the tarnov along the coordinate OX axis, *l* - the length of the width of the tarnov. We integrate equation (1) based on the following condition.

We consider the movement of the seeded cotton stream coming down from Tarnov to be stationary. In this case, the amount of mass does not change per unit of time, i.e

$$\rho \cdot \mathcal{G} \cdot S = \rho_0 \cdot \mathcal{G}_0 \cdot S_0 = Q \tag{2}$$

Here Q-seed cotton consumption,

According to these hypotheses, we will determine the speed and pressure of seed cotton flow in the zone. For clarity, we express the change of the cross-sectional surface along the coordinate OX by a linear law, i.e.

$$S = \mathbf{k}(x) \cdot l \tag{3}$$

Here is the law of change of the consumption of the filling coefficient of the k(x)-seeded cotton flow along the OX axis. In it $\rho = \rho_0 = const$ we determine the speed.

$$\mathcal{G} = \frac{Q_0}{\rho_0 \cdot S} = \frac{Q_0}{\rho_0 \cdot l \cdot \mathbf{k}(x)} \tag{4}$$

(1) equation $p = p_0$ x = 0 we determine the pressure by integrating under the condition that:

$$\mathbf{P} = P_0 - \frac{\rho \cdot Q_0^2}{l^2 \cdot (k(x) \cdot l)^2 \cdot \rho_0^2}$$
(5)

(4), (5) formulas represent the laws of distribution of speed and pressure in the field of the flow of cotton with a variable cross-sectional area. In particular, the cross section

does not change *k*=0 if, $P = P_0$ and $\vartheta = \vartheta_0 = \frac{Q_0}{\rho_0 \cdot l \cdot b_0}$ we get the values.

Constant speed and pressure of the cutting surface $\mathcal{G} = \mathcal{G}_1$ $P = P_1$ to be, we determine their value using these formulas.

$$\mathcal{G}_{1} = \mathcal{G}(l) = \frac{Q_{0}}{\rho_{0} \cdot (\mathbf{k}(x) \cdot l)}$$
(6)

(6) formula seed cotton flow rate in the zone $\vartheta_1 = \vartheta_0$ to be, its value is from the speed at

which the current is transmitted to the zone of the screw piles $n = \frac{k_0}{k_1}$ shows that it will

be twice as big. Using formula (7) for pressure x = l we determine its value in the section.

$$P_{1} = P(l) = P_{0} - \frac{\rho_{1} \cdot Q_{0}^{2}}{l^{2} \cdot (k(x) \cdot l)^{2} \cdot \rho_{0}^{2}}$$
(7)

In the used calculation scheme, it is required that the pressure be positive in an arbitrary section of the tarn during the transfer of seed cotton flow. Such a requirement must be met in order to solve the process in a stationary state. If this condition is not fulfilled, one-dimensional flow movement cannot be observed in a stationary state. This requirement indicates that in practice, an additional condition for flow aerodynamics must be met. This condition results from the pressure being in a positive direction, and from formula (8) such a condition can be obtained [4]

$$P_0 \ge w^2 \cdot \frac{\rho}{\mathbf{k}(x) \cdot l} \tag{8}$$

From this inequality, the following condition is obtained for the limiting angle of the supplier's rotation

$$tg\,\varphi = \mu < \frac{k(x)}{l} \cdot \frac{1}{w^2 + 1} \quad (9)$$

Here $w^2 = \frac{Q_0^2}{l^2 \cdot (b(x) \cdot l)^2 \cdot \rho_0^2}$ height k(x) length *l* given the pressure, density and

seed cotton consumption in the transfer section, (8) is the limiting angle that satisfies the inequality $\varphi = arctg(\frac{k}{l} \cdot \frac{1}{\mu^2 + 1})$ can be selected. In Figure 1, the pressure P₀ two of $n = \frac{k}{l}$

at different values of the ratio ϕ graphs of the relationship between supplier angle and seed cotton consumption Q are presented.

In calculation $l = 0.5 \mathcal{M}$ $b = 0.5 \mathcal{M}$ $\rho_0 = 1.2 \kappa z / M^3$ accepted. [5].

$$\varphi = \operatorname{arctg} \left(\frac{\mathbf{k}(\mathbf{x})}{l} \cdot \frac{1}{\mathbf{w}^2 + 1}\right) \qquad (10)$$

Result. Experiment and analysis of obtained results. Based on the values obtained and used in the calculation, as well as the results of the data processed on the computer, the relationship between the cotton consumption Q at different values of the filling coefficient, the flow of seed cotton sent from the gin at different values of the filling coefficient, and the graphs using the Maple program We will give analyzes in the form of $P_0 = 300 \ \Pi a$

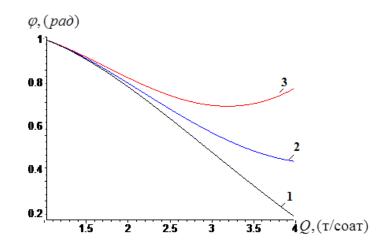
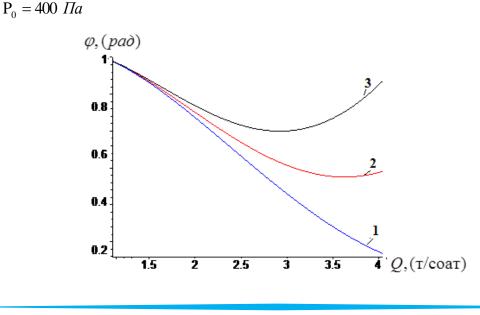



Figure 3. Boundary angle $\varphi(cpa\partial)$ pressure of $P_0(\Pi a)$ and the fill factor is different $k_1 = 0.2$; $k_2 = 0.4$; $k_3 = 0.6$; graphs of changes in cotton consumption in values

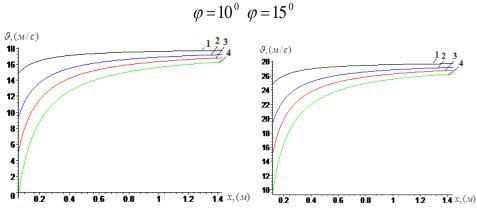


Figure 4. Boundary angle $\varphi(zpa\partial)$ pressure of $P_0(\Pi a)$ the two and the fill factor are different $k_1 = 0.2$; $k_2 = 0.4$; $k_3 = 0.6$; graphs of changes in cotton consumption in values.

Putting the expression (9) into the equation (4), we create the equation of dependence of cotton flow speed on the limit angle and cotton consumption [2].

$$\mathcal{G} = \frac{Q_0}{\rho_0 \cdot S} = \frac{Q_0}{\rho_0 \cdot l \cdot (k - \frac{k}{l} \cdot \frac{1}{w^2 + 1} \cdot x)}$$
(11)

From the expression (11), the analysis of graphs of the dependence of air consumption on the speed of the flow of seed cotton to the screw piles by the angle of the slope is presented using the Maple program.

Figure 5. The rate of cotton flow is different from the consumption of cotton in the loom.

 $Q_1 = 0.5t/h$ $Q_2 = 1.5t/h$ $Q_4 = 3.5t/h$ graphs of changes in the values of the variable OX

With the help of graphs presented in Figures 3, 4 and 5, it is possible to determine the value of the filling coefficient to ensure the transfer of seeded cotton in the gin without interruption of the process. For example: k = 0.5M, l = 0.5M when received, Q = 3.5t/h cotton consumption in a stationary state $P_0 = 300 \Pi a$ for the limiting angle for transmission in pressure $\varphi < 15^\circ$ the inequality should be reasonable, that is, to ensure a stationary state φ angle value 15° should be taken smaller than Only then can we see an increase in productivity.

Areas of application of the obtained results

In the analysis, it is possible to observe an increase in productivity in the axis of the auger cleaner and in the direction of the auger blade. For the limit angle in the defined values of the permissible filling coefficient of cotton in the transfer zone for screw cleaners in the paper $\varphi < 15^{\circ}$ it is stated that inequality is appropriate. The above-mentioned analyzes provide an opportunity to find solutions to theoretical and practical issues that have not yet been resolved in the development of cotton drying and cleaning

technologies. It should be noted that the generality of the work and the cleaning efficiency of the equipment depend not only on the degree of drying of the cotton, but also on the external and internal forces affecting the seeded cotton. Because the separation of small impurities from the cotton pieces also depends on the impact force of the cotton on the surface of the mesh, i.e., the impulses of the impact. Therefore, the practical significance of the results obtained for the development of the theoretical basis for determining the impact pulses when hitting cotton on a mesh net is of great importance.

Conclusions. 1. By developing improved constructions of resource-efficient screw cleaners that perform the cleaning process, it is justified that it is possible to increase the productivity of technological machines and achieve higher product quality.

2. It is based on the fact that the analysis of the factors affecting the movement of seed cotton from the gin and the analysis of its parameters gives the opportunity to implement a positive approach to the creation of new constructions.

3. The relationship between the cotton consumption Q at different values of the filling coefficient of the seeded cotton flow transmitted from the gin was determined using the Maple program k = 0.5M, l = 0.5M when received Q = 3.5t/h cotton consumption in a stationary state $P_0 = 300 \Pi a$ for the limiting angle for transmission in pressure $\varphi < 15^\circ$ it was shown that inequality should be appropriate. It is noted that only in this case, it is possible to observe an increase in work productivity.

References

1. Xayriddin Rakhmonov, and Jumagul Matyakubova Research of the Rotation Frequency of the Working Organs of an Auger Cleaner. Ye3S Web of Conferences 548, 03019 (2024). https://doi/org/10.1051/ye3sconf/202454803019

2. Rakhmonov, K., Fayziev, S., Qodirov, M., Temirov, A., Toyirova, G. <u>Development</u> of a resource-saving technology allowing to increase the yenvironmental sustainability of drying cotton raw materials Ye3S Web of Conferences 390, 06019

3.Vulfson N.I., Kolovskiy M.Z. Nelineynыe zadachi dinamiki mashin. – L.: Mashinostroenie, 1968. – 268 s.

4.Panovko YA.G. Osnovi prikladnoy teorii kolebaniy i udara. – Leningrad: Mashinostroenie, 1970. – 320 s.

5.Djuraev A. i dr. Dinamika sistemi privodov texnologicheskix mashin. – T.: Adabiyot, 1993. – 277 s.

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT **INDUSTRY**

Dadadzhonov Sh., Akhunbabaev O., Muxamadrasulov Sh.,		
Akhunbabaev U., Erkinov Z.	3	
Practice of production of polycomponent threas from a mixture of natural	5	
and chemical fibers		
Korabayev Sh.		
Determining the direct resistance coefficient of cotton fiber in the confusor	13	
tube		
Kulmatov I.		
Study of a new technological equipment for cleaning cotton raw materials	19	
from gross pollution		
Musayeva L., Polatova S.		
Choosing the main features of special clothing for riders, taking into account	24	
the requirements of consumers		
Djurayev A., Khudayberdiyeva M., Urmanov N.		
Kinematic analysis of a cam mechanism with elastic elements of the	31	
mechanism with elastic elements of paired cams of a boel mechanism of a	01	
weaving loom		
Rakhmonov H., Matyakubova J., Sobirov D,		
Analysis of the influence of the filling coefficient of the screw cleaner system		
with seeded cotton on the current consumption of the system		
Madrahimov D., Tuychiyev Sh.		
Impact of saw spacing on lint removal efficiency and quality in the linting	48	
process		
Monnopov J., Kayumov J., Maksudov N.		
Analysis of mechanical properties of high elastic knitted fabrics for	53	
sportswear design	00	
Kamolova M., Abdukarimova M., Usmanova N., Mahsudov Sh.		
Study of the Prospects for the Application of Digital Technologies in the	59	
Fashion Industry in the Development of the Creative Economy		
Ergasheva R., Khalikov K., Oralov L., Samatova Sh., Oripov J.		
Comprehensive assessment of two-layer knitted fabrics	71	
GROWING, STORAGE, PROCESSING AND AGRICULTUR	ΔΤ	
PRODUCTS AND FOOD TECHNOLOGIES		
Aripov M., Kadirov U., Mamatov Sh., Meliboyev M.		

Experimental study of sublimation drying of vegetables by applying ultra – high frequency electromagnetic waves		
Alamov U., Shomurodov D., Giyasova N., Zokirova Sh., Egamberdiev E.	81	
Chemical composition analysis of miscanthus plant leaves and stems		
Vokkosov Z., Orifboyeva M.		
Production of technology for obtaining oil from peanut kernels and refining	88	
the oil obtained in short cycles		
Khalikov M., Djuraev Kh.		
The importance of systematic analysis in the drying process of fruit and	95	
vegetable pastilla		
CHEMICAL TECHNOLOGIES		
Kuchkarova D., Soliyev M., Ergashev O.		
Production of coal adsorbents by thermochemical method based on cotton	101	
stalks and cotton shells and their physical properties		
Askarova D., Mekhmonkhonov M., Ochilov G., Abdikamalova A.,		
Ergashev O., Eshmetov I.	108	
Some definitions about the mechanism of public-private partnership and its role in strengthening the activities of business entities and small businesses		
Ganiyeva N., Ochilov G.		
Effect of bentonite on benzene vapor adsorption in order to determine the	117	
activation conditions of log bentonite		
Kayumjanov O., Yusupov M.		
Synthesis of metal phthalocyanine pigment based on npk and calculation	122	
of particle size using the debye-scherrer equation		
Mukumova G., Turaev Kh., Kasimov Sh.		
Sem analysis and thermal properties of synthesised sorbent based on urea,	127	
formaldehyde, citric acid		
Amanova N., Turaev Kh., Beknazarov Kh., Sottikulov E.,		
Makhmudova Y.	133	
Corrosion resistance of modified sulfur concrete in various aggressive environments		
Eshbaeva U., Alieva N.	141	
Study of the effect of adhesive substances on paper strength properties		
Turayev T., Bozorova G., Eshankulov N., Kadirov Kh., Dushamov A., Murtozoeva Sh.		
Cleaning of saturated absorbents used in natural gas cleaning by three-stage filtration method and analysis of their properties	146	

Muxamedjanov T., Pulatov Kh., Nazirova R., Khusenov A.	150
Obtaining of phosphoric cation-exchange resin for waste water treatment	158
MECHANICS AND ENGINEERING	
Abdullaev A., Nasretdinova F.	165
Relevance of research on failure to power transformers, review	105
Muhammedova M.	172
Anthropometric studies of the structure of the foot	173
Sharibayev N., Nasirdinov B.	
Measuring the impact of mechatronic systems on silkworm egg incubation	181
for premium silk yield	
Abdullayev L., Safarov N.	
Electron beam deposition of boron-based coatings under vacuum pressure	189
and experimental results of nitrogenation in electron beam plasma	
Kadirov K., Toxtashev A.	195
The impact of electricity consumption load graphs on the power	195
Makhmudov I.	
Theoretical basis of the methodology of selecting wear-resistant materials to	204
abrasive corrosion	
Adizova A., Mavlanov T.	
Determining optimal parameter ratios in the study of longitudinal	209
vibrations of threads in weaving process using a model	
Turakulov A., Mullajonova F.	215
Application of the dobeshi wavelet method in digital processing of signals	210
Djurayev Sh.	
Analysis and optimization of the aerodynamic properties of a new multi-	222
cyclone device	
Djurayev Sh.	
Methods for improving the efficiency of multi-cyclone technology in air	228
purification and new approaches	
Ibrokhimov I., Khusanov S.	026
Principles of improvement of heavy mixtures from cotton raw materials	236
Utaev S.	
Results of a study of the influence of changes in oils characteristics on wear	241
of diesel and gas engine cylinder liners	
Abduvakhidov M.	
Review of research issues of determination of mechanical parameters of	249
compound loading structures and working bodies	
Abduvakhidov M.	756
Equilibrium analysis of flat elements of the saw working element package	256

Kudratov Sh., Valiyev M., Turdimurodov B., Yusufov A., Jamilov Sh.	
Determining the technical condition of diesel locomotive diesel engine using diagnostic tools	262
Juraev T., Ismailov O., Boyturayev S.	269
Effective methods of regeneration of used motor oils	
Umarov A., Sarimsakov A., Mamadaliyev N., Komilov Sh.	07(
The oretical analysis of the fiber removing process	276
Tursunov A.	
Statistical evaluation of a full factorial experiment on dust suppression	282
systems in primary cotton processing facilities	
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION
Yuldashev A.	
Historical theoretical foundations of state administration and the issue of	294
leadership personnel	
ECONOMICAL SCIENCES	
Israilov R.	299
Criteria, indicators and laws of small business development	299
Eshankulova D.	305
Demographic authority and its regional characteristics	
Kadirova Kh.	310
Assessment of the efficiency and volatility of the stock market of Uzbekistan	510
Mirzakhalikov B.	
Some definitions about the mechanism of public-private partnership and its	316
role in strengthening the activities of business entities and small businesses	
Ganiev M.	
Income stratification of the population and opportunities to increase	321
incomes	
Aliyeva E.	327
Assessment of innovation activity enterprises using the matrix method	
Azizov A.	335
Industry 4.0 challenges in China	
Azizov A.	341
Industrie 4.0 implementation challenges in Germany	