ISSN 2181-8622

Manufacturing technology problems

Scientific and Technical Journal Namangan Institute of Engineering and Technology

INDEX 🛞 COPERNICUS

INTERNATIONAL

Volume 9 Issue 3 2024

THEORETICAL BASIS OF THE METHODOLOGY OF SELECTING WEAR-RESISTANT MATERIALS TO ABRASIVE CORROSION

MAKHMUDOV IKRORXON

Doctoral student of Andijan machine building institute, Andijan, Uzbekistan Phone.: (0899) 840-9791, E-mail.: <u>mahmudovikrorhon@gmail.com</u>

Abstract: This article presents the theoretical foundations of the method of choosing abrasive-resistant inedible materials. Futurmore, the concepts of abrasive eating are covered more broadly. In agriculture, it is mention about the current state of consumption of the material of the working bodies of soil processing machines. Also, abrasive anti-eating methods have also been cited, and the carbon content of the steel material, its hardness, and relative wear resistance, based on the amounts of chromium, have been analyzed.

Keywords: lemex, abrasive corrosion, soil, resource, sand, stone, material, relative corrosion, special alloys.

Introduction. In agriculture of our republic, high-performance and powerful techniques are used. The result is an increase in the yield of cultivated crops and a decrease in manual labor and cost of production. These activities are important in providing the population with food.

One of the sides to the use of agricultural techniques itself is their operation in direct contact with the soil. As a result, the working organs of these techniques quickly become edible and unsuitable for work as a result of friction with the soil. This results in one-third of the world's energy being used to overcome friction, and one-quarter of the annual production metal is used to recover some of the lost by eating in machine details and compounds [1].

Along with the above, the resource of the working bodies being supplied for soil processing machines in our Republic is significantly lower than the norms established in the technical requirements, which makes them eat up and fail even more quickly. This situation is becoming more serious with the fact that such properties as the composition, structure, hardness of the material of working bodies produced in our Republic are not based and are made of low-carbon steels without increased thoroughness or thermally processed.

As a result, agricultural producers are significantly increasing their costs due to the large purchase of these working bodies as spare parts, delaying the deadlines for carrying out work by lowering the quality of fieldwork and work productivity. For example, in our republic, more than 250,000 lemexs per year become unusable. Since these lemexes are made without having the necessary structural parameters and without being based on materials and without following the rules of production technology and thermal processing, this number is increasing from year to year and, as a result, in our republic, more than 1250 tons of metal rolling for lemexes alone or, in other words, 4 billion. about the sum is being spent.

Therefore, today, when the world's fuel and material reserves are decreasing, the requirements for the reliability and durability of machines are increasing, reducing these

costs and effectively using existing agricultural techniques are important tasks. All of the above happens due to the abrasive eating of the working organs of soil-processing machines.

Abrasive eating is the decay of the surface of the detail under the influence of solid grains of abrasive. There are two different types of effect of the abrasive grain on the surface of the detail. In the first, the abrasive grain affects the surface by falling between the rubbing surfaces of two details. In the latter case, the rubbing surface of the detail is affected by abrasive particles in the composition of a solid (such as soil, sand, stone, mining rocks) medium.

Methodology and empirical analysis. Here we will first consider the methodology for choosing an abrasive refractory material after choosing an edible material in the general case.

The choice of edible material is carried out in the following order. First it is determined how many times the service life (resource) of the detail should be gained. To do this, the average working resources of working bodies working in abrasive eavesdropping conditions and made of available materials are determined and analyzed. Based on the results obtained, the desired edible tolerance, relative edible tolerance, or relative edible rates are calculated. This uses the following formulas:

$$i = ni_r, \ \varepsilon = n\varepsilon_r, \ \gamma = \frac{\gamma_r}{n},$$

Several materials are then selected to match the increased index of edible resistance, and are subjected to laboratory tests on edible resistance. Based on the results obtained, these materials are sorted according to the index of edible resistance. From the selected line of materials, materials that meet the requirement to achieve edible resistance are extracted. From these selectable materials, a work organ is made and they are put to the production test. On the basis of the results of the production test, the desired material is selected and it is based on the feasibility [2].

The choice of material for combating abrasive eating is carried out as follows. First it is determined how much it is necessary to increase the service life of the detail. To do this, the average values of the service life of the details of the machine are estimated. In doing so, their serviceability is determined by constructing a resource diagram. At the same time, work is carried out to alleviate the working conditions of the detail and improve it from a constructive point of view. The following expressions can then be used to calculate whether the detail is the required edible resistance, relative edible resistance, or relative edible.

$$i = ni_p, \qquad \varepsilon = n\varepsilon_p, \qquad \gamma = \frac{\gamma_p}{n},$$

Results. The type of edible detail is then determined based on the classification of edible species. Based on the above, the material will proceed to the selection stage. At this stage, laboratory studies are carried out on a number of materials, and based on its results, several of the most edible of the tested materials are selected. Based on these results, an edible Resistance series of materials that have been tested again can be compiled. To proceed to the next stage of testing, the cost-effectiveness of applying

selected materials is calculated. Then details made of selected materials are tested on a stand suitable for its working conditions in the car. If the results obtained do not break, tests can be carried out at an accelerated rate. A detail made of the newly selected material is put to the production test and its service life is determined. To ensure the reliability of the results obtained so that random factors do not affect the results of the test, it is recommended to conduct tests at special landfills, and the tests must be repeated sufficiently.

Figure 1. The effect of the composition of its material on relative edibility and its hardness.

Based on the results of production tests, a final conclusion is made on the choice of material and its economic effectiveness in applying it to the same machine is assessed [3]. The graph of the dependence of the composition of steel material of different brands on their hardness and resistance to eating is presented in Figure 1.

A series of stamps of Steel have been recommended for making lemexs based on research over the years. For Example, Novikov B.C. research has been conducted by to determine the abrasive wear resistance of steels such as 45, 65 Γ , Λ 53, 40X, XI2, 30X Γ CA, IIIX15, X12M Φ , 4X5B2 Φ C, X Γ , XB Γ . The determined relative edible resistance of these steels is shown in Table 1 below.

Analysis of the results of the study obtained showed that their relative absorption resistance depends on the amount of decaying elements such as carbon and other Chromium contained in the steel material, as well as on hardness [4].

uц	na naroness								
	N⁰	Steel brand	С	Chem Si	ical comp Mn	oosition, ' Cr	% Other	Hardness, HRC	Relative eating resistance, ε
	1	45	0,45	0,25	0,67	0,14	-	HRB 90	1
	2	45	0,45	0,25	0,67	0,14	-	45	1,4
	3	<i>A</i> 53	0,47	0,25	0,67	0,14	-	47	1,7
	4	65Г	0,65	0,25	1	0,14	Ni-0,2 Cu- 0,18	52	1,9

Table 1. Dependence of the relative edible resistance of steels on chemical composition and hardness

5	40X	0,4	0,27	0,65	1	Ni-0,21	55	2,7
6	30ХГСА	0,3	1	1	1	-	55	2,5
7	X12	2,12	0,38	0,37	11,8	W-0,04	60	4,6
8	ШХ15	1,05	0,28	0,3	1,43	W-1,38	50	3,1
						W-1,9 V-		
9	4Х5В2ФС	0,4	1	0,35	1,5	0,7	52	2,5
						Cu-0,25		
						Mo-0,5 V-		
10	Х12МФ	1,5	0,25	0,3	12	0,2	56	3,3
						Cu-0,25		
11	ХΓ	1,51	0,27	0,53	1,45	-	52	2,7
12	ХВГ	1,06	0,28	0,85	1,02	W-1,3	51	3

Conclusions. The choice of edible Steel Brands is important to ensure the efficiency and long-term operation of soil-processing machines. High carbon steels, special alloys and chromium-molybdenum Steels increase the edible resistance of working organs, significantly prolonging their working resource. The use of such materials reduces production costs and ensures long-term operation.

The test results found that chizel-cultivator lemexes made from shx15sg brand Steel were eaten on average 3.47 gr per hectare. While lemexs made from the same brand of thermally processed steel were on average 2.21 gr eaten, lemexs made from the same brand of thermally processed 45 G were on average 1.13 gr eaten.

In the tests, the work resource of lemexs with increased resistance to eating by thermal processing increased by up to 3.06 times. While extirpation part consumption decreased by 63.2%.

The methodology for choosing abrasive wear-resistant materials is based on the study of the physical and mechanical properties of the material, chemical composition, microstructure and abrasive tests. With the help of this methodology, the most suitable materials for the working bodies of soil processing machines are selected, and the increase in their working resource is ensured.

References

1. Khrushchev M.M., Babichev M.A. Abrasive wear. – M.: Nauka, 1970. – 252 p. (in Russ)

2. Dobrovolsky A.G., Koshelenko P.I. Abrasive wear resistance of materials: A reference guide.-K.: "Technique", 1989-128 p. (in Russ)

3. Chudina, O.V. The choice of materials and methods of hardening of parts of transport engineering: textbook. the manual / O.V. Chudina, G.V. Gladova. – M.: MADI, 2015. – 120 p. (in Russ)

4. Novikov V.S. Ensuring the durability of the working bodies of tillage machines: Abstract. Dissertation of the Doctor of technical Sciences. Moscow FGOU VPO MGAU – 2008. – 39 p.;

5. Qosimov, K., Obidov, O., Maxmudov, I. (2023). Qishloq xoʻjaligida keng qollanilayotgan chizel-kultivator dolotalari materiallarini organish. *= Евразийский журнал технологий и инноваций*, *1* (12 Part 2), 103-107.

6. Sultonov, R. S., Maxmudov, I. R., Obidov, O. S. (2023). Результаты исследования материалов лемеха культиваторов с неглубокой вспашкой почвы.= *Научный Фокус*, *1*(5), 135-141.

7. Набиев, Т. С., Эркабоев, Х. Ж., & Махмудов, И. Р. (2020). О квадратногнездовом способе посева семян хлопчатника. = In Фундаментальные и прикладные научные исследования: актуальные вопросы, достижения и инновации (pp. 62-65).

8. Қосимов, К., Қодиров, Н., & Маҳмудов, И. (2023). Плуг лемехларига термик ишлов бериб ресурсини оширишнинг экспериментал тадқиқот натижалари. = *Innovatsion texnologiyalar*, 49(01), 49-54.

9. Davidboev, B., Mirzakhanov, Y., Makhmudov, I., & Davidboeva, N. (2020). Research of lateral assembly of the belt in flat-belt transmissions and transport mechanisms. = *International Journal of Scientific and Technology Research*, 9(1), 3666-3669.

10. Garkunov D.N. Tribotechnics (wear and tear): Textbook.- 4th ed., reprint. and additional – Moscow: "Publishing House of the Ministry of Agriculture", 2001.-616 p. (in Russ)

11. Chichinadze A.V., Brown E.D., Boucher N.A. and others Fundamentals of tribology (friction, wear, lubrication)): Textbook for technical universities. / A.V. Chichinadze. – Moscow: Mashinostroenie, 2001. – 664 p. (in Russ)

12. Serov N.V. Hardening of flat working bodies of agricultural machinery by electrocontact soldering of metal tape.: Diss. ... kan. of technical sciences. – Moscow, 2017. – 170 p. (in Russ)

13. <u>https://lektsiopedia.org/lek-10201.html</u>

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT **INDUSTRY**

Dadadzhonov Sh., Akhunbabaev O., Muxamadrasulov Sh.,					
Akhunbabaev U., Erkinov Z.	2				
Practice of production of polycomponent threas from a mixture of natural					
and chemical fibers					
Korabayev Sh.					
Determining the direct resistance coefficient of cotton fiber in the confusor	13				
tube					
Kulmatov I.					
Study of a new technological equipment for cleaning cotton raw materials	19				
from gross pollution					
Musayeva L., Polatova S.					
Choosing the main features of special clothing for riders, taking into account	24				
the requirements of consumers					
Djurayev A., Khudayberdiyeva M., Urmanov N.					
Kinematic analysis of a cam mechanism with elastic elements of the	31				
mechanism with elastic elements of paired cams of a boel mechanism of a	51				
weaving loom					
Rakhmonov H., Matyakubova J., Sobirov D,					
Analysis of the influence of the filling coefficient of the screw cleaner system					
with seeded cotton on the current consumption of the system					
Madrahimov D., Tuychiyev Sh.					
Impact of saw spacing on lint removal efficiency and quality in the linting	48				
process					
Monnopov J., Kayumov J., Maksudov N.					
Analysis of mechanical properties of high elastic knitted fabrics for	53				
sportswear design					
Kamolova M., Abdukarimova M., Usmanova N., Mahsudov Sh.					
Study of the Prospects for the Application of Digital Technologies in the					
Fashion Industry in the Development of the Creative Economy					
Ergasheva R., Khalikov K., Oralov L., Samatova Sh., Oripov J.	71				
Comprehensive assessment of two-layer knitted fabrics					
GROWING, STORAGE, PROCESSING AND AGRICULTURA					
PRODUCTS AND FOOD TECHNOLOGIES					
Arinov M. Kadirov II. Mamatov Sh. Malihovov M.					

Aripov M., Kadirov U., Mamatov Sh., Meliboyev M.

Experimental study of sublimation drying of vegetables by applying ultra –	74		
Alamov II Shomurodov D. Givasova N. Zokirova Sh. Egamberdiev F.			
Chemical composition analysis of miscanthus plant leaves and stems	81		
Valiance 7 Orithonena M			
	00		
Production of technology for obtaining oil from peanut kernels and refining	88		
the oil obtained in short cycles			
Khalikov M., Djuraev Kh.	~-		
The importance of systematic analysis in the drying process of fruit and	95		
vegetable pastilla			
CHEMICAL TECHNOLOGIES			
Kuchkarova D., Soliyev M., Ergashev O.			
Production of coal adsorbents by thermochemical method based on cotton	101		
stalks and cotton shells and their physical properties			
Askarova D., Mekhmonkhonov M., Ochilov G., Abdikamalova A.,			
Ergashev O., Eshmetov I.	108		
Some definitions about the mechanism of public-private partnership and its			
role in strengthening the activities of business entities and small businesses			
Ganiyeva N., Ochilov G.	117		
Effect of bentonite on benzene vapor adsorption in order to determine the	11/		
Very min or O Very M			
Kayumjanov O., Tusupov M.	100		
Synthesis of metal phthalocyanine pigment based on npk and calculation	122		
of particle size using the debye-scherrer equation			
Mukumova G., Turaev Kh., Kasimov Sh.			
Sem analysis and thermal properties of synthesised sorbent based on urea,	127		
formaldehyde, citric acid			
Amanova N., Turaev Kn., Beknazarov Kn., Sottikulov E., Makhmudaya V			
Makhinudova I.	133		
environments			
Esnbaeva U., Alleva N.	141		
Study of the effect of adhesive substances on paper strength properties			
Turayev T., Bozorova G., Eshankulov N., Kadirov Kh., Dushamov A.,			
Murtozoeva Sh.	110		
Cleaning of saturated absorbents used in natural gas cleaning by three-stage filtration method and analysis of their properties			
manufacture and analysis of all properties			

Muxamedjanov T., Pulatov Kh., Nazirova R., Khusenov A.				
Obtaining of phosphoric cation-exchange resin for waste water treatment	150			
MECHANICS AND ENGINEERING				
Abdullaev A., Nasretdinova F.	165			
Relevance of research on failure to power transformers, review	105			
Muhammedova M.	172			
Anthropometric studies of the structure of the foot	1/5			
Sharibayev N., Nasirdinov B.				
Measuring the impact of mechatronic systems on silkworm egg incubation	181			
for premium silk yield				
Abdullayev L., Safarov N.				
Electron beam deposition of boron-based coatings under vacuum pressure	189			
and experimental results of nitrogenation in electron beam plasma				
Kadirov K., Toxtashev A.	105			
The impact of electricity consumption load graphs on the power	195			
Makhmudov I.				
Theoretical basis of the methodology of selecting wear-resistant materials to	204			
abrasive corrosion				
Adizova A., Mavlanov T.				
Determining optimal parameter ratios in the study of longitudinal	209			
vibrations of threads in weaving process using a model				
Turakulov A., Mullajonova F.	215			
Application of the dobeshi wavelet method in digital processing of signals	215			
Djurayev Sh.				
Analysis and optimization of the aerodynamic properties of a new multi-	222			
cyclone device				
Djurayev Sh.				
Methods for improving the efficiency of multi-cyclone technology in air	228			
purification and new approaches				
Ibrokhimov I., Khusanov S.	226			
Principles of improvement of heavy mixtures from cotton raw materials	230			
Utaev S.				
Results of a study of the influence of changes in oils characteristics on wear	241			
of diesel and gas engine cylinder liners				
Abduvakhidov M.				
Review of research issues of determination of mechanical parameters of	249			
compound loading structures and working bodies				
Abduvakhidov M.	054			
Equilibrium analysis of flat elements of the saw working element package	250			

Kudratov Sh., Valiyev M., Turdimurodov B., Yusufov A., Jamilov Sh.				
Determining the technical condition of diesel locomotive diesel engine using				
diagnostic tools				
Juraev T., Ismailov O., Boyturayev S.				
Effective methods of regeneration of used motor oils	209			
Umarov A., Sarimsakov A., Mamadaliyev N., Komilov Sh.	276			
The oretical analysis of the fiber removing process	270			
Tursunov A.				
Statistical evaluation of a full factorial experiment on dust suppression	282			
systems in primary cotton processing facilities				
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION			
Yuldashev A.				
Historical theoretical foundations of state administration and the issue of	294			
leadership personnel				
ECONOMICAL SCIENCES				
Israilov R.	200			
Criteria, indicators and laws of small business development	299			
Eshankulova D.	205			
Demographic authority and its regional characteristics	303			
Kadirova Kh.	210			
Assessment of the efficiency and volatility of the stock market of Uzbekistan	510			
Mirzakhalikov B.				
Some definitions about the mechanism of public-private partnership and its	316			
role in strengthening the activities of business entities and small businesses				
Ganiev M.				
Income stratification of the population and opportunities to increase	321			
incomes				
Aliyeva E.	327			
Assessment of innovation activity enterprises using the matrix method				
Azizov A.	335			
Industry 4.0 challenges in China	000			
Azizov A.	341			
Industrie 4.0 implementation challenges in Germany				