

Scientific and Technical Journal Namangan Institute of Engineering and Technology

ESTABLISHMENT OF THE DEVICE FOR SEPARATION OF FIBERS SUITABLE FOR SPINNING FROM THE WASTE OF THE COTTON CLEANING PROCESS

XURAMOVA XADICHA

Associate professor of Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0899) 725-8768, E-mail.: hadicha71@inbox.ru

Abstract: This article explored a device for the separation of cotton pieces from cotton waste that were separated from the cotton waste that was separated from the processes of cleaning cotton in its original processes. The factors affecting the processing of the separation device have been taught and suggestions are made. In the separation device, differential equations of mass movement are formed and appropriate graphics are obtained.

Keywords: separation device, regenerator, assembly, fiber, waste, cleaning, cotton, movement, productivity.

Introduction. Today, the demand for increasing the production of high-quality fiber, meeting the world standards, puts before the scientists and researchers of the field an important task of improving the existing techniques and technology. On the other hand, in the period when the level of improvement of spinning and weaving equipment is increasing, great attention is being paid to obtaining quality products through waste processing and rationally using limited resources to achieve economic savings.

The process of initial processing of cotton consists of a number of technological processes, i.e. placing, storage, transportation, drying, cleaning, separation of fibers and silting form a unique technological system. Here, cotton cleaning is of special importance, it has a significant impact on the quality of the product. Taking this into account, it is necessary to pay great attention to cotton cleaning devices and products from it. [1].

Cotton cleaning enterprises clean cotton from various impurities. According to their origin, dirty compounds are divided into organic and mineral, active and passive according to their separation, and small and large types according to their size. At the same time, cleaning devices also have different designs. It should be noted that the more cotton is passed through the cleaning equipment, the higher the fibering efficiency. But at the same time, the level of fiber and seed damage also increases. Therefore, in the process of cleaning cotton, work is performed at an optimal value, and it is observed that a certain amount of cotton is added to the waste composition. To solve this problem, many scientists T.I. Boldinsky, R.G. Makhkamov, Y.F. Budin, R.V. Korabelg'nikov, I.T. Maksudov, T.M. Kuliev, R.Z. Burnashev, G.D. Djabbarov, S.D. Baltabaev, B.G. Kadqrov, I.K. Khafizov, R.M. Kattakhodkhaev, A.D. Djuraev, D.A.Kotov, V.I.Kuzmin, R.M.Muradov, M.J.Koshakova, V.N.Guseynov, M.M.Djamalova, K.Abdullaev, D.A.Usmanov have proposed various designs, regenerator devices have been developed and effective results have been achieved [2,3]. However, as technology advances, so does technology. At the same time, it was proposed to further improve the process of extracting a piece of cotton containing fibers suitable for spinning from the waste in the process of spinning cotton [4,5].

A regression model was built on the efficiency of separating cotton pieces during the regeneration process and its adequacy was determined. According to it, two factors the distance between saw drum and colosniks (mm) and rotation speed of saw drum (rpm) - were selected for the regeneration process, and with this plan we will carry out the following experiment. Two trials were conducted for each option. The test results in the first experiment - 95%, 96%, in the second experiment - 93%, 92%, in the third option - 93%, 93% and in the fourth experiment - 91%, 90% efficiency of separating cotton pieces was obtained...

Table 1 shows the natural distribution of the plan, Table 2 shows the experiment grid, and Table 3 shows the planning matrix.

Table 1. Natural giving of the plan.

Factors	$X_{_{ m min}}$	$X_{\scriptscriptstyle ext{max}}$	Δ	$X_{_0}$	Conditional Symbol
The distance between sawed drum and columns, mm	10	20	5	15	$X_{_1}$
Rotational speed of saw drum, grm	250	300	25	275	$X_{_2}$
x_1 and x_2	-1	+1		0	

Table 2. The net of experiments.

Variant number	1	2	3	4	
X_1	10	20	10	20	
x_2	250		300		

Table 3. Planning Matrix.

Variant number	Facto	r level	$-\overline{y}_{u_1}$, %	\overline{y}_{u2} , %	\overline{y}_u , %	S^{2}	y_u , %	$R_{\scriptscriptstyle 0u}$, %
	X_1	\mathcal{X}_2				\mathcal{S}_{u}	y_u , 70	
1.	-	-	95	96	95,5	0,5	95,4	0,13
2.	+	-	93	92	92,5	0,5	92,6	0,14
3.	-	+	93	93	93,0	0,0	93,1	0,13
4.	+	+	91	90	90,5	0,5	90,4	0,14
					371,5	1,5		

In the table S_u^2 , y_u , R_{0u} , y_u we explain the parameters and give them how to identify them. $S_u^2 - m$ a dispersion describing the spread m of test results by each option to verify the implementation of parallel tests with the same number (proving the same variety of them), defined as follows:

$$S_{u}^{2} = \frac{\sum_{p=1}^{n} (\bar{y}_{up} - \bar{y}_{u})^{2}}{m-1},$$
(1)

here u – the order number of the option;

$$p = 1, 2, ...;$$

m – the order number of the test;

n – the number of tests in each variant;

$$\overline{y}_u = \frac{1}{n} \sum_{p=1}^m \overline{y}_{up}$$
 – the average number of tests per option.

The average number of parallel experiments without us m = 2, so

$$\bar{y}_{u} = \frac{\sum_{p=1}^{n} \bar{y}_{up}}{m} = \frac{(y_{u1} + y_{u2})}{2}$$

$$S_{u}^{2} = (\bar{y}_{u1} - \bar{y}_{u})^{2} + (\bar{y}_{u2} - \bar{y}_{u})^{2}$$

$$S_{1}^{2} = ((\bar{y}_{11} - \bar{y}_{1u})^{2} + (\bar{y}_{21} - \bar{y}_{1u})^{2} / (m-1)) = 0,5$$

$$S_{2}^{2} = ((\bar{y}_{12} - \bar{y}_{2u})^{2} + (\bar{y}_{22} - \bar{y}_{2u})^{2} / (m-1)) = 0,5$$

$$S_{3}^{2} = ((\bar{y}_{13} - \bar{y}_{3u})^{2} + (\bar{y}_{23} - \bar{y}_{3u})^{2} / (m-1)) = 0,0$$

$$S_{4}^{2} = ((\bar{y}_{14} - \bar{y}_{4u})^{2} + (\bar{y}_{24} - \bar{y}_{4u})^{2} / (m-1)) = 0,5$$

In all variants of the experiment, the Kochren criterion is calculated according to the following formula to verify the same sex (uniformity) of dispersions. If

$$G < G_{\alpha:k,:k}, \tag{2}$$

Here, α – the level of importance, k_1 , k_2 – the level of freedom;

If inequality is not observed, the same-sexness of dispersions is deniable and the processing dispersion is calculated as the mean in all directions. Without us

$$G = \frac{S_u^2(\text{max})}{\sum_{u=1}^{N} S_u^2} = \frac{0,5}{0,5+0,5+0,0+0,5} = 0,333$$

 $G_{0,05;k_1;k_2}$ In our case $k_1=N=4$, when there $k_2=m-1=1$ is a level of importance lpha=0,05, it is determined by the table on [1], $G_{0,05;4;1}=0,91$.

 $G < G_{0,05;4;1}$ Since (0,33 < 0,91) the hypothesis about the same sex of dispersions is undeniable and can then be S_u^2 applied to evaluate the adequacy of the model.

Now we determine the regression coefficients.

$$b_0 = \frac{1}{N} \sum_{u=1}^{4} \bar{y}_u = 371,5/4 = 92,9$$

$$b_1 = \frac{1}{N} \sum_{u=1}^{4} (x_{1u} \bar{y}_u) = \frac{1}{4} (-y_1 + y_2 - y_3 + y_4) = -1,4$$

Vol. 9 Issue 2 www.niet.uz

2024

$$b_2 = \frac{1}{N} \sum_{u=1}^{4} (x_{2u} \bar{y}_u) = \frac{1}{4} (-y_1 - y_2 + y_3 + y_4) = -1,1$$

$$b_{12} = \frac{1}{N} \sum_{u=1}^{4} (x_{1u} x_{2u} \overline{y}_u) = \frac{1}{4} (y_1 - y_2 - y_3 + y_4) = 0.13$$

So we have the use of a 2-order incorrect polynomial

$$y_1 = 92.9 - 1.4x_1 - 1.1x_2 + 0.13x_1x_2$$
 (3)

The St'yudent criterion is used to evaluate the importance of polynomial regression coefficients, initially the same reliable interval is determined for all regression coefficients by formula Δb :

$$\Delta b = t_{0.05;k} \frac{Sy}{\sqrt{N}} \tag{4}$$

 $t_{\scriptscriptstyle 0.05:k}$ "St'yudent criterion, he k depends on the level of freedom ([1] is determined by the table, k = 4 and $t_{0.05;k} = 2,78$);

$$S_y = \sqrt{S_y^2}$$
 – the average square difference determined by the formula;

k = N(m-1) the N number of freedom levels for options and for the number of tests (*m* number of measurements in a single test). *m*

Regression coefficients that exceed the reliable intervals by module are significant:

$$|b_0| \ge \Delta b$$
, $|b_i| \ge \Delta b$, $|b_{ij}| \ge \Delta b$ (5)

We have it N = 4, m = 2 in this case f = 4(2-1) = 4, $t_{0.05;4} = 2,78$

$$\Delta b = 2,78\sqrt{\frac{0,38}{4}} = 0,85;$$

$$b_0 = 92.9 > 0.85;$$
 $b_1 = 1.4 > 0.85;$
 $b_2 = 1.1 > 0.85;$ $b_3 = 0.13 < 0.85;$

$$b_2 = 1.1 > 0.85;$$
 $b_{12} = 0.13 < 0.85.$

Accordingly, (3) b_{12} in addition to the coefficient in the equation, others will be significant.

$$\dot{y}_1 = 92.9 - 1.4x_1 - 1.1x_2. \tag{6}$$

When using such a condition, of course

$$R_{0u} = \left| \left(\overline{y}_u - y_u \right) \cdot 100 / \overline{y}_u \right|$$

Using the help of calculating the error in the regression equation adopted, you will need to determine the level of relative discrepancy. In some cases, unheeded excesses can greatly affect the level of error, and as a result, the level of accuracy in the account may not meet the requirements. Using the above three-hadi regression equation, the largest relative discdipancy is 0.14% (table 3).

To verify the adequacy of the linear model (6), we determine the dispersion or residual dispersion by the Fisher criterion by the following formula:

$$S_{na}^{2} = \frac{\sum_{u=1}^{N} (y_{u} - \overline{y}_{u})^{2}}{N - k - 1}$$
 (7)

here, $\dot{y}_u - u$ - the value calculated using the formula in the variant (3);

 \overline{y}_u - u the current value of the indicator in the variant;

N – the number of options;

k – the number of input factors.

The Fisher criterion itself is determined as follows:

$$F = \frac{S_{na}^2}{S_y^2},\tag{8}$$

here, S_y^2 – processing or residual dispersion found by formula;

$$S_{y}^{2} = \frac{1}{N} \sum_{u=1}^{N} S_{u}^{2} = \frac{1}{N(m-1)} \sum_{u=1}^{N} \sum_{p=1}^{m} (\overline{y}_{up} - \overline{y}_{u})^{2}$$

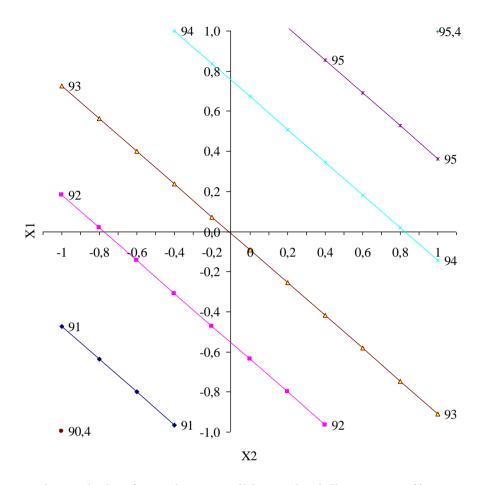
We have,

2024

$$S_{na}^{2} = \frac{\sum_{u=1}^{N} (\hat{y}_{u} - \overline{y}_{u})^{2}}{N - k - 1} = 0,06$$

$$S_y^2 = \frac{1}{N} \sum_{u=1}^{N} S_u^2 = \frac{1.5}{4} = 0.38$$

$$F = S_{\mu a}^2 / S_{\nu}^2 = 0.06 / 0.38 = 0.17$$


If calculated for $F_{0.05;k_1;k_2}$ parameters $k_1 = N - k - 1 = 4 - 2 - 1 = 1$ $k_2 = N(m-1) = 4$ for the Fisher criterion $F_{0.05;k_1;k_2} = 7,71$ (defined from the table on [1]). $F < F_{0.05;k_1;k_2}$ (0,17 < 7,71) the hypothesis of a linear link is not denied because inequality is performed. Thus, with a warranty of 0.95, a dysfunctional regression equation (3) can be replaced by (6) a regression equation.

 x_1 Against (6) we solve the equation and have the following:

$$x_1 = \frac{-y + 92,9 - 1,3x_2}{1,25} \tag{9}$$

Vol. 9 Issue 2 www.niet.uz

Through this formula, we will have the following graffiti.

It's 1, 000m. Graph of the output parameter of the regression line y (efficiency of separating cotton pieces, %) at different values.

Conclusion. In conclusion, it was found that significant results could be achieved by implementing a cotton regeneration device. Modeling the reganration process and obtaining relevant graphics, which determined the high efficiency of the separation process.

References

- 1. A manual for the initial processing of cotton. Tashkent. Journal of the American Medical Association(Journal of the American Medical Association), 2019. 477 б.
- 2. Мамажанов Ш.О. Пахта регенератори бўйича назарий тадқиқотлар ўтказиш. НамМТИ илмий-техника журнали, № 1. 2023...
- 3. Kuliev T.M., Djuraev A. Improvement of the Construction and Justification of Parameters of the Fibrous Material Regenerator / International Journal of Advanced Science and Technology Vol. 29, No. 8s, (2020), pp. 453 460. Mamatkulov O. Separator increases the useful surface of the net surface and preserves the natural properties of cotton. NammTI. 2015

241 Vol. 9 Issue 2 www.niet.uz

- 4. Kuliev T.M., Kulmatov I.T. Development of a cotton regenerator to increase its cleaning effect. Proceedings of A Multidisciplinary International Scientific Conference on Science, Technology, Education and Humanities, November 30th, 2020 Hosted from Ukraine, Pp. 28-30
- 5. Kuliev T.M., Kulmatov I.T., Nazirov R.R. Results of research works on development of cotton regenerator. Polish Science Journal, International Science Journal, Issue 12(33) Part 1, pp. 104-108

CONTENTS

PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGH	łΤ
INDUSTRY	
Usmanova N., Abdukarimova M., Kamolova M., Ismoilova S.	3
Research on the process of building dress shapes in 3d space	
Rayimjonov M., Rahimov F., Sarimsakov A., Muradov R.	
Increasing the efficiency of retaining device for fine and large heavy	13
mixtures in cotton raw materials	
Kosimov A., Ahmadjanov S.	
Design of the mechanical properties of the fabric used by wind yarn	19
spinning from cotton and polyester fibers	
Salokhiddinova M., Muradov M.	
Ways to improve the efficiency of moving device used in air transportation	27
of cotton	
Nazarova M.	33
Research of methods of antibacterial treatment of textile materials	
Sheraliyeva R., O'ralov L.	
Study of technological indicators of two-layer knitted fabrics obtained on	37
long Xing LXA 252 knitting machine	
Turdiyeva O'., Khojiyev A.	
Mathematical modeling of the development technology of selected leather	42
for the transformation assortment	
GROWING, STORAGE, PROCESSING AND AGRICULTURA	Δ T
PRODUCTS AND FOOD TECHNOLOGIES	XL
Uzaydullaev A.	40
Research on the food safety of pomegranate juice and concentrate production technology	49
Kuzibekov S.	
Safety studies in soybean oil production process	56
Ismoilov K., Khamdamov A.	
Acceleration of heat and matter exchange processes in the final distiller with	62
a convex-concave plate	
Abdullaeva B., Soliev M.	
	67
Method of making syrup for cold drinks Melihavay M. Ourhanay H.	
Meliboyev M., Qurbanov U.	72
Compounds that determine their nutritional value based on the types of food products	73

Nishanov O'., Atakhanov Sh., Mamajanova M.	79
Effect of energy drinks on the human body	19
Ikromova Y., Nuriddinov Sh., Hamdamov A.	84
Optimization of heat load in three-stage distillation of vegetable oil micelles	
Turg'unov Sh., Mallabayev O.	90
Use in a new receptor in functional bread making	
CHEMICAL TECHNOLOGIES	
Ergashev O., Bakhronov Kh., Esonkulova N., Asfandiyorov M.,	
Akhmadov M., Absalyamova I.	95
Determination of the inhibitory efficiency of the inhibitor synthesized based	93
on maleic anhydride by the electrochemical method	
Ergashev O., Rakhmatkarieva F., Davlatova O.	
Mechanism of H ₂ O vapor adsorption in a type zeolites. The adsorption	102
isotherms.	
Yoqubjonova M., Boymirzaev A.	107
Biomedical properties and applications of chitosan derivatives	107
Rajabaliyev N., Rahmonov J., Nigmatillayeva M., Rajabov Y.,	
Akbarov Kh.	116
Thermodynamic study of the anti-corrosion properties of diciandiamide in	116
an acid environment	
Ochilov A., Urinboeva M., Abdikamalova A., Kuldasheva Sh.,	
Eshmetov I.	123
Study of rheological flow curves of ED20 emulsions	
Nozimov E., Sultanov B., Kholmatov D., Sherkuziev D., Nodirov A.	
Phosphorus fertilizer technology activated from phosphorus powder and	129
mineralized mass	
Kadirova M., Sabirov V.	
Regults of machanachemical synthesis of methylane blue compley with	135
Results of mechanochemical synthesis of methylene blue complex with d-metals	
Jalilov A., Sottikulov E., Karimova M., Boymirzaev A	
Synthesis of polycarboxylate plasticizer based on acrylic acid and apeg and	142
its gel chromatographic analysis	
Khusenov A., Ashurov M., Abdullaev O., Rakhmanberdiev G.	
Determination of optimal conditions for the extraction of gelatin from	149
secondary local raw materials	
Lutpillaeva M., Hoshimov F., Ergashev O.	
Synthesis of silver nanoparticles using various reducing agents and	155
stabilizers	

Akhmadjanov I., Djalilov A., Karimov M.	
Studying isotherms of adsorption and desorption of nitrogen on a sorbent synthesis for selective extraction of lithium	164
Kalbaev A., Salixanov A., Seitnazarova O., Abdikamalova A.	
Change of cation exchange capacity during the thermal treatment of	171
bentonite and their textural characteristics	
MECHANICS AND ENGINEERING	
Obidov A., Shamshitdinov M., Mashrabboyev I.	
Reduce energy consumption by adjusting the electrodvigate speed of the	178
linter device	
Haydarova R.	
Development of boundary conditions for mathematical models of unsteady	184
water movement in water management facilities	
Bekmirzayev D., Qosimov E., Ismoilov A.	
Consequences of earthquakes and preventive measures based on foreign	189
experiences	
Aliev R., Eraliyev A., Nosirov M., Mirzaalimov A., Mirzaalimov N.	
Investigation of an improved solar water heater in comsol multiphysics	196
software	
Obidov A., Akhmadalieva D., Otaqoʻziyev D.	
Development of an experimental construction of a device for cleaning from	202
small piece of contaminants	
Obidov A., Mirzaumidov A., Abdurasulov A., Otaqoʻziyev D.	
Deformation of the shaft in torsion and the effect of torsion along with	208
bending	
Matkarimov P., Juraev D., Usmonkhujayev S.	
Study of stress-strain state of an earth dam using a three-dimensional model	217
of the structure	
Mamajonov Sh.	
Methods of determining the efficiency of the cotton regenator in the cleaning	228
process	
Xuramova X.	
Establishment of the device for separation of fibers suitable for spinning	236
from the waste of the cotton cleaning process	
Kholboyeva Sh., Kosimov A.	243
Principles of classification of costs to ensure product quality in production	243
Kholboyeva Sh., Kosimov A.	
Methodological processing of quality control of technological processes of	249
manufacturing enterprises	
U 1	

Shoxobidinova Sh., Kosimov A., Mamadaliyeva D.	
General guidelines for quality management and technologies in the	255
metallurgical industry supply chain	
Sheraliyeva R., O'ralov L.	
Study of technological indicators of two-layer knitted fabrics obtained on	262
long Xing LXA 252 knitting machine	
Tuychiev T., Turdiev H., Rozmetov R., Shorakhmedova M.	267
Effect of screw cleaner on cotton spinning	
ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT	ION
Kayumov M.	272
Enlightenment movement of Jadids in Khiva khanate	
Alikhanov M.	278
Constitutional reforms in Uzbekistan during the years of independence	
Alikhanov M.	
The struggle for constitutional monarchy in the khanate of Khiva at the	283
beginning of the XX century	
Azibaev A.	
Forecasting GDP growth and GDP per capita in Uzbekistan by the ordinary	289
least squares (OLS) regression analysis	
Tuychibayeva G., Kukibayeva M.	296
Overwiev of teaching English to teenagers in Uzbekistan secondary schools	
Ismailova Z.	
Methodology for improving lexical competence of future english language	301
teachers	
Xuramov L.	307
Algorithms for modeling function and medical signals in wavelet methods	
ECONOMICAL SCIENCES	
Bekmirzayev B.	
Agriculture development in ensuring economic security in Uzbekistan:	316
theory, analysis and prospects	
Mirzatov B.	
Social evaluation of the youth behavior and value sphere in Namangan	323
region	
Khojimatov R.	
The development competitiveness of silk industry in Namangan region	329
Maksudov A.	
	335
The development and formation of competition of the market for the products of the sewing and knitting industry	333
products of the sewing and kinting industry	

373

Maksudov A.	
Government support of the garment and knitting industry within the scope	341
of business activity	
Yuldasheva D.	246
Personnel competencies in the field of tourism personnel management	346
Abdieva N.	
Development of small business and private entrepreneurship with the help	350
of investments	
Abdieva N.	257
The labor market and its effect on the economy	357
Yuldasheva D., Hashimov P.	265
Tax systems and their assessment criteria	365