### ISSN 2181-8622

**Manufacturing technology problems** 



# Scientific and Technical Journal Namangan Institute of Engineering and Technology

INDEX COPERNICUS

INTERNATIONAL

Volume 9 Issue 2 2024









## DEVELOPMENT OF AN EXPERIMENTAL CONSTRUCTION OF A DEVICE FOR CLEANING FROM SMALL PIECE OF CONTAMINANTS

#### **OBIDOV AVAZBEK**

Professor of Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0893) 941-7775

#### AKHMADALIEVA DILNOZA

PhD student of Namangan Institute of Engineering and Technology, Namangan, Uzbekistan Phone.: (0893) 941-7775 \*Corresponding author.

#### OTAQO'ZIYEV DONIYORJON

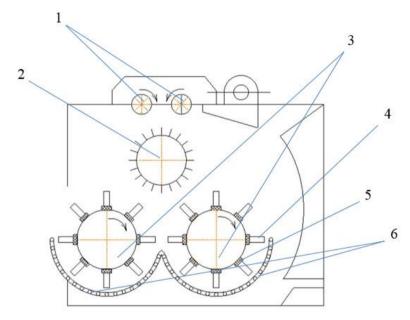
Assistant of Tashkent state transport university, Tashkent, Uzbekistan E-mail.: <u>doniyorjon956@gmail.com</u>

**Abstract**: In this article, the results of the work on the creation of the experimental construction of the improved small dirt cleaning device and conducting experiments on it are given. As a result of this research, an improved scheme of arrangement of working bodies and an effective mode of operation of the device for cleaning cotton from small piece of contaminants was developed.

Keywords: Cotton, small and big piece of contaminants, seed, belt pile, continuous mesh surface, device, aggregate, cleaning efficiency

**Introduction.** At present, cotton ginning enterprises use the UXK complex unit for cleaning raw materials from large and small piece of contaminants. It is known that impurities are divided into small and large types, and during cleaning, different technological processes are carried out in the devices according to these types. Large impurities are cleaned in the saw and furnace bar zone, and small piece of contaminants are cleaned in the pile drum and mesh surface area. Cleaned cotton raw material is sent to the ginning process.

Cotton raw materials may contain cotton leaves, husk residues, broken and broken seeds, and small mineral impurities. If the impurities in the cotton are not cleaned to the maximum during cleaning (usually the cleaning efficiency is 70-75%), the quality of the fiber produced after the subsequent processes may decrease [1]. Taking this into account, in the newly improved device for cleaning and small piece of contaminants, small piece of contaminants from the composition of cotton raw materials are prevented from being added to the air and passing to the next technological processes. The advantage of the newly proposed cleaning device is to increase the efficiency and reduce the mechanical impact on the raw material due to cleaning with a continuous mesh surface and belt piles.


The main working organs of the improved fine dirt cleaning device are mesh surface with continuous slits [2] (slots have no obstructions along the total area of the surface, the rings ensuring the strength of the wires are located on the lower surface of the mesh



surface and do not interfere with the dirt falling along the ring) and consists of a drum with pegs mounted on a belt element (Fig. 1).

The improvement of fiber quality by 15-18% in the improved small dirt cleaning device will bring considerable economic efficiency to the enterprise. The improved cleaning device consists of the following main parts (Fig. 1): 1. supply rollers, 2. scraping drum, 3. pile drums, 4. piles, 5. belt base of piles, 6. continuous slotted mesh surface.

The device works as follows: from the supply rollers 1, through the drum 2, the cotton raw material meets the pile drums 3, which are installed on the belt base 5. Drums with piles carry the mass of raw cotton and bring it to the mesh surfaces 6, and the cotton is thoroughly crushed as a result of the influence of the piles and the drag over the mesh surface. As a result of grinding, small piece of contaminants in the cotton raw material pass through the slits of the mesh surface.



**Figure 1**. Technological scheme of the improved fine impurities treatment zone 1-supply rollers, 2-squeezing drum, 3-pile drums, 4-Pegs, 5-Pegs Strap Base, 6-Continuous Slotted Mesh Surface.

The main technological difference of the device from other cleaners is that the mesh surface is made of smooth steel wires, and due to the fact that the wires form continuous slits, the useful area of the mesh surface is almost doubled (54.2%), resulting in a significant increase in cleaning efficiency. In addition, due to the increased surface smoothness, it is possible to work easily without jams at the given maximum productivity, and due to the fact that the piles are mounted on a belt base, the condition of damage due to mechanical impact increases as the intensity of digging increases.

When the amount of defects and impurities in the fiber in the cotton ginning enterprise is within the set accounting norms, it is carried out on the basis of a certain cleaning plan for the processing of cotton raw materials. The choice of cotton cleaning



plan depends on its initial contamination, selective and industrial variety, and cotton cleaning is carried out in the next process.

Currently, the main technological equipment for cotton processing is the 1XK type cotton cleaner, the 1XK pile cleaner and the UXK cleaning unit. The use of such machines in the cotton ginning industry allows obtaining cotton fibers of the required quality [3-4].

Therefore, in practice, some selective types of cotton use machines that provide high cleaning efficiency and good performance, because the separation of different selective types of cotton from the fiber is different due to the high adhesion of dirt to the fiber.

The set rotation speed of the drums of raw material decontamination devices, the mode of operation, their constructions were used for the processing of industrial varieties of previously grown cotton. In addition, the recommendations given as a result of the research are used for previously grown cotton varieties, and differ with a number of parameters for new cotton varieties, such as productivity, ripening time, fiber length, seed size. One of the main decisive factors in the technological process of cleaning cotton raw materials is the size of the cotton seed. In the new selected varieties of raw material, the size of the cotton seed is reduced. For example, in the experiments on determining the size of cotton seeds of the selective variety "Porloq-1, 2", the methodology was carried out as follows: the sizes of 100 seeds were determined for testing. After measuring the test samples, the length and width of each seed were measured using a micrometer, then the width and length of the seed were divided into three groups, and the number of seeds in a certain group was determined [5-6]. The results of the experiment are presented in Table 1.

| Nº | Cotton<br>selective<br>variety | Staple<br>mm | length, | Linear<br>density,<br>m∙tex | Relative<br>strength,<br>gf/tex | tensile | Microneur<br>indicator | Туре |
|----|--------------------------------|--------------|---------|-----------------------------|---------------------------------|---------|------------------------|------|
| 1. | C-6524                         | 33,5         |         | 159                         | 25,8                            |         | 4,2                    | 4    |
| 2. | Namangan 77                    | 32,4         |         | 176                         | 25,0                            |         | 4,1                    | 5    |
| 3. | Omad                           | 32,6         |         | 185                         | 24,4                            |         | 4,3                    | 5    |
| 4. | Oqqo`rg`on 2                   | 32,6         |         | 167                         | 25,4                            |         | 4,1                    | 5    |
| 5. | Porloq-1                       | 33           |         | 165                         | 36                              |         | 4,3                    | 5    |
| 6. | Istiqlol-14                    | 34,5         |         | 165                         | 28,5                            |         | 4,4                    | 5    |

Table 1. Technological characteristics of the fibers of selected cotton varieties.

From the information given in Table 2, it can be seen that the number of seeds with a length of 0.0068-0.0072 m is 14%, the amount of seeds with a length of 0.0075-0.0081 m is 36%, 0.0083-0, The amount of seeds 01 m long was 50%. It should also be noted that the amount of seeds with a width of 0.0035-0.0040 m is 22%, the amount of seeds 0.0041-0.0045 m is 55%, and the amount of seeds 0.0050-0.0055 m is 23%. Is

**Table 2.** The results of measuring the dimensions of the seed.

| Seed weight, | Longth m      | Number of  | Width of seeds in cross | Number     | of |
|--------------|---------------|------------|-------------------------|------------|----|
| g            | Length, m     | seeds, pcs | section, m              | seeds, pcs |    |
|              | 0,0068-0,0072 | 15         | 0,0035-0,0040           | 25         |    |
| 10,12        | 0,0075-0,0081 | 37         | 0,0041-0,0045           | 49         |    |
|              | 0,0083-0,010  | 48         | 0,0050-0,0055           | 26         |    |
|              | 0,0068-0,0072 | 14         | 0,0035-0,0040           | 22         |    |
| 10,16        | 0,0075-0,0081 | 36         | 0,0041-0,0045           | 55         |    |
|              | 0,0083-0,010  | 50         | 0,0050-0,0055           | 23         |    |
|              | 0,0068-0,0072 | 37         | 0,0035-0,0040           | 36         |    |
| 10,18        | 0,0075-0,0081 | 23         | 0,0041-0,0045           | 38         |    |
|              | 0,0083-0,010  | 40         | 0,0050-0,0055           | 24         |    |

The results of the experiment showed that the size of Porloq selection cotton seeds was 15-18% smaller than the size of cotton seeds grown before [7]. This requires paying attention to the established technological parameters and procedures of cotton cleaning equipment. First, small seeds are more susceptible to mechanical damage than relatively large seeds, and secondly, the size of the grooves of the cleaning surfaces (currently around 6 mm) should be reduced. For this, it is necessary to quickly replace the working parts of the cleaning equipment and adapt it to the working mode. It follows from this that during the processing of cotton raw materials with relatively small seeds, there are cases where the seeds are squeezed into the slits with a large size or the raw material passes through the slits. When designing a new device, it is desirable to make the distance between the slots 5 mm or less.

In order to analyze the reason for the low cleaning efficiency of technological machines, the dependence of the overall cleaning efficiency of the cleaner, which is equal to the number of working bodies of the cleaning section, was used, which has the character of geometric progression and is expressed by the following equation:

$$K_{\sum m} = K_1 \frac{1 - q^m}{1 - q}$$

where K1 is the cleaning efficiency of the first section, %;

q - denominator of geometric progression;

m - number of cleaning sections (working drums), pcs

In general, the amount of working bodies in the cleaner is not very large. Also, the monotony of the process not only reduces the cleaning efficiency of each subsequent section, but also leads to the deterioration of its appearance and the appearance of defects.

Thus, it is not advisable to use one type of working bodies in the cleaner. This idea is also based on experiences in the textile industry, where different working bodies are used in each pass of fiber processing (spinning, carding and carding), never the same machines are installed in a row [8].

In the cotton cleaning industry, the use of different working bodies for cleaning cotton, including the installation of pile drums on a belt base (rubber, metal, etc.) in the 1XK cleaners used for cleaning cotton from small piece of contaminants, has been studied



in various researches, and the impact of all proposed working bodies on the cotton being cleaned has been studied. works under In addition, in order to increase the useful area of the cleaning surface, one of the main working bodies in the zone of cleaning small piece of contaminants was recommended to be installed with continuous slits, and continuous slits were developed using 4 mm steel wires.

Also, it is desirable to consider the possibility of using an adaptive technological system, which is effectively used in various fields of mechanical engineering, and cleaning in an adaptive system depending on the selective and industrial grade, grade and initial dirtiness of cotton.

The trend of efficient use of every element and every area is promoted in the cotton ginning enterprise based on modern analysis. Therefore, increasing the efficiency of the main workers in cotton ginning and rational use of each resource should be one of the main tasks of research.

Based on the analysis of theoretical and practical research, the mesh surface, which consists of continuous slits formed by wires, provides maximum cleaning efficiency. As an advantage of the proposed mesh surface, it can be shown that the influence of mechanical damage to cotton raw material during processing and the maximum increase of useful surface are reduced. In addition, the use of a drum with belt-based piles, developed on the basis of modern research, provides the possibility of additional friction, which further increases the efficiency of self-cleaning.

The results of comparative tests are given in Table 3, which shows the results of testing the constructions of two options. The effectiveness of the process during cleaning is determined by the cleaning efficiency of the machine and the degree of damage to the seeds. According to the data given in Table 3, the new improved device had almost no significant effect on seed damage during operation.

| Indicator name                            | Results of studies carried | Results of studies<br>conducted on an |
|-------------------------------------------|----------------------------|---------------------------------------|
|                                           | out on the existing device | conducted on an<br>improved device    |
| The initial state of cotton raw materials |                            |                                       |
| Cotton moisture, %                        | 8,5                        | 8,5                                   |
| The amount of impurities in cotton, %     | 3,0                        | 3,0                                   |
| The state of raw cotton after cleaning    |                            |                                       |
| Cotton moisture, %                        | 8,3                        | 8,3                                   |
| The amount of impurities in cotton, %     | 0,55                       | 0,218                                 |
| Cleaning efficiency of the machine, %     | 80                         | 92                                    |
| Mechanical damage to seeds, %             | 2,5                        | 1,25                                  |
| Amount of free fiber, %                   | 0,21                       | 0,192                                 |

Table 3. The results of production tests on the improved version of the cotton cleaner

In order to ensure the accuracy and reliability of the experiments, all the compared tests were carried out using the method of five repetitions under the same production conditions based on the standard. Experiments were carried out using S-6524 and Nam-77, the first variety and the first grade cotton raw materials.



**Summary.** Samples of initial indicators of cotton raw material were taken from the gin, and samples for determining the quality indicators of raw cotton were taken after the gin.

In addition, during the tests, the state of "false ginning" (separation of the fiber from the seed) was also controlled in the device. Free fiber is an indicator that is evaluated during the cleaning process. The less free fibers the waste contains after treatment, the more profitable it is for production. It should be noted that free fibers are more or less mixed with waste after the cleaning process. From the research results in Table 3, it can be seen that the output of free fibers in the existing device in the enterprise is 0.21%, and in the improved device, this indicator is 0.192%. This can be seen by the operation of the device in "soft mode" and thus a significant reduction of mechanical effects.

#### References

1. Мирахмедов Д., Кенжабаев Ш., Мухаммедов Ж., Султанмуродов А., Бобоматов А. Анализ нагруженности упругих пластин сетчатых поверхностей хлопко-сырца // Ж.Известия ВУЗов, сред. Тех. Наук № 2-3 2002.

2. Светлицкий В.А., Стасинко В. Сборник задач по теории колебаний // Высшая школа, М., 1973, 456 стр.

3. Джураев А. Мухамедов Ж. Бобоматов А. Экспериментальнее изучение характера колебаний активных элементов сетчатой поверхности очистителя хлопки от мелкого сора // Ж.ФерПИ, илмий-техника Журнали №3, 2002 г.

4. A.A.Obidov, D.A.Axmadaliyeva. Paxtani turli iflosliklardan tozalash jarayonining hozirgi olib borilgan izlanish bo'yicha ilmiy ishlar tahlili. FarPI xalqaro ilmiy-amaliy konerensiya. Farg'ona, 2023 yil, 26-27 aprel, 72-74 b.

5. Maftuna Inoyatova, Bahriddin Mirzaboev, Dilnoza Ahmadaliyeva, Shaxnoza Karimova, Mayramxon Abduraximova, Avazbek Sharifjonov. Analysis of Technical-Constructive Capabilities and Problems of Cleaning Aggregates. AIP Conference, 2022, 4-5 may.

6. Д.М.Мухаммадиев, Р.Х.Росулов, Ф.Х.Ибрагимов, Х.А.Ахмедов. Математические модели и регулирования процесса сушка хлопка-сырца// Проблемы механики, Ташкент. 2014, №3-4, с.180-185.

7. www.zetlab.ru – сайт изготовителя интеллектуальных датчиков и измерительных модулей. ЗАО "Электронные технологии и метрологические системы

8. М.Аутамбаев, А.З.Иванов, Ю.Т.Терехов. Основы проектирования научноисследовательского эксперимента. Ташкент.Ўқитувчи. 1993. -141с.



## CONTENTS

#### PRIMARY PROCESSING OF COTTON, TEXTILE AND LIGHT INDUSTRY

| INDUSTRI                                                                       |    |  |
|--------------------------------------------------------------------------------|----|--|
| Usmanova N., Abdukarimova M., Kamolova M., Ismoilova S.                        | 2  |  |
| Research on the process of building dress shapes in 3d space                   | 3  |  |
| Rayimjonov M., Rahimov F., Sarimsakov A., Muradov R.                           |    |  |
| Increasing the efficiency of retaining device for fine and large heavy         | 13 |  |
| mixtures in cotton raw materials                                               |    |  |
| Kosimov A., Ahmadjanov S.                                                      |    |  |
| Design of the mechanical properties of the fabric used by wind yarn            | 19 |  |
| spinning from cotton and polyester fibers                                      |    |  |
| Salokhiddinova M., Muradov M.                                                  |    |  |
| Ways to improve the efficiency of moving device used in air transportation     | 27 |  |
| of cotton                                                                      |    |  |
| Nazarova M.                                                                    | 22 |  |
| Research of methods of antibacterial treatment of textile materials            | 33 |  |
| Sheraliyeva R., O'ralov L.                                                     |    |  |
| Study of technological indicators of two-layer knitted fabrics obtained on     | 37 |  |
| long Xing LXA 252 knitting machine                                             |    |  |
| Turdiyeva O'., Khojiyev A.                                                     |    |  |
| Mathematical modeling of the development technology of selected leather        | 42 |  |
| for the transformation assortment                                              |    |  |
| GROWING, STORAGE, PROCESSING AND AGRICULTUR                                    | ΔΤ |  |
|                                                                                |    |  |
| PRODUCTS AND FOOD TECHNOLOGIES                                                 |    |  |
| Uzaydullaev A.                                                                 |    |  |
| Research on the food safety of pomegranate juice and concentrate               | 49 |  |
| production technology                                                          |    |  |
| Kuzibekov S.                                                                   | 56 |  |
| Safety studies in soybean oil production process                               | 50 |  |
| Ismoilov K., Khamdamov A.                                                      |    |  |
| Acceleration of heat and matter exchange processes in the final distiller with | 62 |  |
| a convex-concave plate                                                         |    |  |
|                                                                                |    |  |

Abdullaeva B., Soliev M.

Method of making syrup for cold drinks

Meliboyev M., Qurbanov U.

Compounds that determine their nutritional value based on the types of **73** food products



| Nishanov O'., Atakhanov Sh., Mamajanova M.                                                                   | 79  |
|--------------------------------------------------------------------------------------------------------------|-----|
| Effect of energy drinks on the human body<br>Ikromova Y., Nuriddinov Sh., Hamdamov A.                        |     |
| Optimization of heat load in three-stage distillation of vegetable oil micelles                              | 84  |
| Turg'unov Sh., Mallabayev O.                                                                                 |     |
| Use in a new receptor in functional bread making                                                             | 90  |
| CHEMICAL TECHNOLOGIES                                                                                        |     |
|                                                                                                              |     |
| Ergashev O., Bakhronov Kh., Esonkulova N., Asfandiyorov M.,                                                  |     |
| Akhmadov M., Absalyamova I.<br>Determination of the inhibitory efficiency of the inhibitor synthesized based | 95  |
| on maleic anhydride by the electrochemical method                                                            |     |
| Ergashev O., Rakhmatkarieva F., Davlatova O.                                                                 |     |
| Mechanism of H <sub>2</sub> O vapor adsorption in a type zeolites. The adsorption                            | 102 |
| isotherms.                                                                                                   | 102 |
| Yoqubjonova M., Boymirzaev A.                                                                                |     |
| Biomedical properties and applications of chitosan derivatives                                               | 107 |
| Rajabaliyev N., Rahmonov J., Nigmatillayeva M., Rajabov Y.,                                                  |     |
| Akbarov Kh.                                                                                                  |     |
| Thermodynamic study of the anti-corrosion properties of diciandiamide in                                     | 116 |
| an acid environment                                                                                          |     |
| Ochilov A., Urinboeva M., Abdikamalova A., Kuldasheva Sh.,                                                   |     |
| Eshmetov I.                                                                                                  | 123 |
| Study of rheological flow curves of ED20 emulsions                                                           |     |
| Nozimov E., Sultanov B., Kholmatov D., Sherkuziev D., Nodirov A.                                             |     |
| Phosphorus fertilizer technology activated from phosphorus powder and                                        | 129 |
| mineralized mass                                                                                             |     |
| Kadirova M., Sabirov V.                                                                                      |     |
| Results of mechanochemical synthesis of methylene blue complex with                                          | 135 |
| d-metals                                                                                                     |     |
| Jalilov A., Sottikulov E., Karimova M., Boymirzaev A                                                         |     |
| Synthesis of polycarboxylate plasticizer based on acrylic acid and apeg and                                  | 142 |
| its gel chromatographic analysis                                                                             |     |
| Khusenov A., Ashurov M., Abdullaev O., Rakhmanberdiev G.                                                     |     |
| Determination of optimal conditions for the extraction of gelatin from                                       | 149 |
| secondary local raw materials                                                                                | 11) |
| Lutpillaeva M., Hoshimov F., Ergashev O.                                                                     |     |
| Synthesis of silver nanoparticles using various reducing agents and stabilizers                              | 155 |



| Akhmadjanov I., Djalilov A., Karimov M.                                       |      |
|-------------------------------------------------------------------------------|------|
| Studying isotherms of adsorption and desorption of nitrogen on a sorbent      | 164  |
| synthesis for selective extraction of lithium                                 |      |
| Kalbaev A., Salixanov A., Seitnazarova O., Abdikamalova A.                    |      |
| Change of cation exchange capacity during the thermal treatment of            | 171  |
| bentonite and their textural characteristics                                  |      |
| MECHANICS AND ENGINEERING                                                     |      |
| Obidov A., Shamshitdinov M., Mashrabboyev I.                                  |      |
| Reduce energy consumption by adjusting the electrodvigate speed of the        | 178  |
| linter device                                                                 |      |
| Haydarova R.                                                                  |      |
| Development of boundary conditions for mathematical models of unsteady        | 184  |
| water movement in water management facilities                                 |      |
| Bekmirzayev D., Qosimov E., Ismoilov A.                                       |      |
| Consequences of earthquakes and preventive measures based on foreign          | 189  |
| experiences                                                                   |      |
| Aliev R., Eraliyev A., Nosirov M., Mirzaalimov A., Mirzaalimov N.             |      |
| Investigation of an improved solar water heater in comsol multiphysics        | 196  |
| software                                                                      |      |
| Obidov A., Akhmadalieva D., Otaqoʻziyev D.                                    |      |
| Development of an experimental construction of a device for cleaning from     | 202  |
| small piece of contaminants                                                   |      |
| Obidov A., Mirzaumidov A., Abdurasulov A., Otaqoʻziyev D.                     |      |
| Deformation of the shaft in torsion and the effect of torsion along with      | 208  |
| bending                                                                       |      |
| Matkarimov P., Juraev D., Usmonkhujayev S.                                    |      |
| Study of stress-strain state of an earth dam using a three-dimensional model  | 217  |
| of the structure                                                              |      |
| Mamajonov Sh.                                                                 |      |
| Methods of determining the efficiency of the cotton regenator in the cleaning | 228  |
| process                                                                       |      |
| Xuramova X.                                                                   | •••  |
| Establishment of the device for separation of fibers suitable for spinning    | 236  |
| from the waste of the cotton cleaning process                                 |      |
| Kholboyeva Sh., Kosimov A.                                                    | 243  |
| Principles of classification of costs to ensure product quality in production | - 10 |
| Kholboyeva Sh., Kosimov A.                                                    |      |
| Methodological processing of quality control of technological processes of    | 249  |
| manufacturing enterprises                                                     |      |
| <u> </u>                                                                      |      |



| Shoxobidinova Sh., Kosimov A., Mamadaliyeva D.                                   |      |  |
|----------------------------------------------------------------------------------|------|--|
| General guidelines for quality management and technologies in the                | 255  |  |
| metallurgical industry supply chain                                              |      |  |
| Sheraliyeva R., O'ralov L.                                                       |      |  |
| Study of technological indicators of two-layer knitted fabrics obtained on       | 262  |  |
| long Xing LXA 252 knitting machine                                               |      |  |
| Tuychiev T., Turdiev H., Rozmetov R., Shorakhmedova M.                           | 267  |  |
| Effect of screw cleaner on cotton spinning                                       | 207  |  |
| ADVANCED PEDAGOGICAL TECHNOLOGIES IN EDUCAT                                      | ION  |  |
| Kayumov M.                                                                       | 272  |  |
| Enlightenment movement of Jadids in Khiva khanate                                |      |  |
| Alikhanov M.                                                                     | 278  |  |
| Constitutional reforms in Uzbekistan during the years of independence            | 270  |  |
| Alikhanov M.                                                                     |      |  |
| The struggle for constitutional monarchy in the khanate of Khiva at the          | 283  |  |
| beginning of the XX century                                                      |      |  |
| Azibaev A.                                                                       |      |  |
| Forecasting GDP growth and GDP per capita in Uzbekistan by the ordinary          | 289  |  |
| least squares (OLS) regression analysis                                          |      |  |
| Tuychibayeva G., Kukibayeva M.                                                   | 296  |  |
| Overwiev of teaching English to teenagers in Uzbekistan secondary schools        |      |  |
| Ismailova Z.                                                                     | 9.04 |  |
| Methodology for improving lexical competence of future english language teachers | 301  |  |
| Xuramov L.                                                                       |      |  |
| Algorithms for modeling function and medical signals in wavelet methods          | 307  |  |
| ECONOMICAL SCIENCES                                                              |      |  |
| Bekmirzayev B.                                                                   |      |  |
| Agriculture development in ensuring economic security in Uzbekistan:             | 316  |  |
| theory, analysis and prospects                                                   |      |  |
| Mirzatov B.                                                                      |      |  |
| Social evaluation of the youth behavior and value sphere in Namangan             | 323  |  |
| region                                                                           |      |  |
| Khojimatov R.                                                                    |      |  |
| The development competitiveness of silk industry in Namangan region              | 329  |  |
| Maksudov A.                                                                      |      |  |
| The development and formation of competition of the market for the               | 335  |  |
| products of the sewing and knitting industry                                     | 555  |  |
|                                                                                  |      |  |



| Maksudov A.                                                              |     |  |
|--------------------------------------------------------------------------|-----|--|
| Government support of the garment and knitting industry within the scope |     |  |
| of business activity                                                     |     |  |
| Yuldasheva D.                                                            | 346 |  |
| Personnel competencies in the field of tourism personnel management      | 340 |  |
| Abdieva N.                                                               |     |  |
| Development of small business and private entrepreneurship with the help |     |  |
| of investments                                                           |     |  |
| Abdieva N.                                                               | 257 |  |
| The labor market and its effect on the economy                           | 357 |  |
| Yuldasheva D., Hashimov P.                                               | 265 |  |
| Tax systems and their assessment criteria                                | 365 |  |